Social and Environmental Report 2007

Toyoda Industries started to publish its environmental report in fiscal year 2000. In fiscal year 2005, the report was expanded to cover the social aspects of Toyoda Industries’ business activities. This was accompanied by a title change to the Social and Environmental Report.

Editorial Policy

The main goal of this report is to openly, fairly, and comprehensibly explain Toyoda Industries Group efforts in our global business activities from the aspect of our social responsibilities. We hope that this report will serve to reinforce the company’s communication with our stakeholders and heighten awareness of our social responsibilities among our employees and our business partners.

<Report Scope>
The Toyoda Industries Group (Toyoda Industries Corporation and its subsidiaries and affiliated companies)

<Report Period>
April 2006 – March 2007 (Parts of the report contain the most up-to-date information available at the time of its publication.)

Reference Guidelines
Sustainability Reporting Guidelines 2002 (Global Reporting Initiative (GRI))

Definition of Terms
“FY 2007” refers to the fiscal year ended March 31, 2007, and other fiscal years are referred to in a corresponding manner.
Profile of the Toyota Industries Group

Company name: TOYOTA INDUSTRIES CORPORATION

President: Tetsuro Toyoda

Established: November 18, 1926

Head Office: 2-1, Toyoda-cho, Kariya-shi, Aichi-ken, Japan

Business Overview
Toyota Industries was founded to manufacture and market automatic looms, which had been invented by Sakichi Toyoda. Since then, the company has expanded its business scope beyond textile machinery to materials handling equipment, car air-conditioning compressors, automobiles, engines, electronics, and logistics.

Corporate Data (For the year ended March 2007)

- Capital: ¥80.4 billion
- Number of Employees: 36,096 (11,075 (non-consolidated))
- Investment in Tangible Assets: ¥129.0 billion
- Research and Development Expenses: ¥34.5 billion
- Net Sales: ¥1,878.3 billion (¥1,135.6 billion (non-consolidated))
- Operating Income: ¥89.9 billion (¥39.2 billion (non-consolidated))
- Ordinary Income: ¥108.4 billion (¥58.0 billion (non-consolidated))
- Net Income: ¥59.4 billion (¥40.2 billion (non-consolidated))
- Total Assets: ¥3,585.8 billion
- Equity Capital: ¥1,751.4 billion (Ratio of Net Worth: 48.8%)
- Return on Assets (ROA): 1.7%
- Return on Equity (ROE): 3.5%

Net Sales by Business Segment (Consolidated)

- Automobile*: ¥904.8 billion (48% of Total)
- Materials Handling Equipment: ¥767.2 billion (41% of Total)
- Logistics*: ¥89.4 billion (5% of Total)
- Textile Machinery: ¥58.4 billion (3% of Total)
- Others: ¥58.3 billion (3% of Total)

Net Sales, Number of Subsidiaries/affiliates and Production Sites by Geographical Segment

Note) Subsidiaries and affiliates: The Toyota Industries Group consists of Toyota Industries Corporation and its 183 subsidiaries and affiliated companies (which are broken down to 45 domestic subsidiaries, 117 overseas subsidiaries, and 21 affiliated companies that are accounted for by the equity method).

Organization Chart

- Board of Corporate Auditors
- Board of Directors
- President
- Corporate Center
- TOYOTA Material Handling Company
- Textile Machinery Division
- Automotive Headquarters
- Vehicle Division
- Engine Division
- Electronics Division
- Compressor Division
- Advanced Logistics Division

*1 Automobile: includes car air-conditioning compressor business, vehicle business, engine business and electronics business.
*2 Logistics: includes AL business, etc.
In November 2006, Toyota Industries celebrated the 80th anniversary of its establishment. We would like to offer our sincere appreciation for the understanding and support of our stakeholders who have made this milestone possible.

During the past eight decades, the world and our company have changed significantly. Originally founded to manufacture and sell textile machinery, Toyota Industries’ business has since diversified and expanded globally to include automobiles and materials handling equipment in line with advancements in motorization and greater efficiency in logistics.

As our role in society has expanded along with public scrutiny, we must address both the scale of our business and its growth potential as well as fulfilling our “Corporate Social Responsibility (CSR)”. We fully recognize these demands from society and perceive compliance not only as adherence to the laws, but also as respect for the social norms, culture, and customs of the local communities.

Another important social responsibility is preserving the global environment. There is an ever-increasing awareness among people that if nothing is done, the current burdens on the global environment may lead to an irreversible situation. It has become clear that attaining a balance between sustainable economic growth and preservation of the global environment is a big challenge that we all must work to solve. It is also clear that one of the possible solutions is the development of technology.

We are now carrying out technological development aimed at tackling the global environmental problems confronting our planet. Accordingly, we are also making efforts to minimize the environmental impacts generated by our business activities. Specifically, last year we drew up the Fourth Environmental Plan and are making steady progress in achieving our objectives.

Since Toyota Industries’ inception, the spirit of “contributing to society through manufacturing” has been handed down through successive generations. One of the basic management policies of our company is “to strive to offer products and services that are clean, safe, and of high quality.” I believe that the realization of this basic policy is synonymous with fulfilling our CSR for the entire group. Therefore, each and every member of the Toyota Industries Group must steadily, honestly, and diligently refocus on the “basics of manufacturing” and maintain an unwavering commitment to pursuing the challenge of “manufacturing inspired by dreams”.

The details of our activities during the last fiscal year are presented in this report. I ask for your continued understanding, as well as welcome your frank comments and opinions.

President Tetsuro Toyoda
Basic Philosophy (Toyota Industries' Corporate Philosophy)

Respect for the Law
Toyota Industries is determined to comply with the letter and spirit of the law, in Japan and overseas, and to be fair and transparent in all its dealings.

Respect for Others
Toyota Industries is respectful of the people, culture, and tradition of each region and country in which it operates. It also works to promote economic growth and prosperity in those countries.

Respect for the Natural Environment
Through its corporate activities, Toyota Industries works to contribute to regional living conditions and social prosperity and also strives to offer products and services that are clean, safe, and of high quality.

Respect for Customers
Toyota Industries conducts intensive product research and forward-looking development activities to create new value for its customers.

Respect for Employees
Toyota Industries nurtures the inventiveness and other abilities of its employees. It seeks to create a climate of cooperation, so that employees and the Company can realize their full potential.

Vision 2010—Unite Our Group Strengths

Growth
- Further improve on businesses with global top market share and aim for the undisputed No.1 position
- Attain overwhelming and core strengths, such as key technologies and the level of quality, cost, and delivery (QCD), in respective businesses and products

Innovation
- Develop leading-edge technologies and expand value chain to bring about innovation through fresh ideas and out-of-the-box thinking

Diffusion of Good Practices
- Propagate workplace strengths and teamwork spirit transcending businesses and ages
- Pass on good, healthy corporate culture that constantly nurtures strong leaders, improves upon specialized techniques, skills, and TPS, cherishes the spirit of harmony, and follows through on projects with the participation of everyone
Businesses and Responsibilities of the Toyota Industries Group

Fulfilling Responsibilities with High Quality Products

The Toyota Industries Group is characterized by the variety of business operations it carries out in diverse markets and the large number of products that hold high market shares in their respective markets. This chapter introduces the group’s seven major business divisions and presents the “high quality products” that these divisions offer, as well as explaining what types of responsibilities each division is striving to fulfill.

Note: Figures for forklifts and air-jet looms are for 2006 (Jan-Dec). The figure for compressors is for FY 2007 (Apr 2006 – Mar 2007). All figures are internal estimates.

Graph 1: Top-Selling Products Throughout the World (Share of Global Market)

- Forklifts: 23%
- Air-Jet Looms: 44%
- Car Air-Conditioning Compressors: 42%

Materials Handling Equipment Business

Textile Machinery Business

Car Air-Conditioning Compressor Business

Vehicle Business

Engine Business

Electronics Business

AL Business (Advanced Logistics Business)
Toyota Industries' materials handling equipment business develops, manufactures, and sells industrial vehicles such as forklifts, tow tractors, and shovel loaders. We are also dedicated to providing customers with optimal materials handling systems for conveying, storing and sorting, using automated storage and retrieval systems, and automatic guided vehicle systems. We provide a broad range of forklifts, ranging in capacity from 0.5 tons to heavy-duty models with a capacity of over 40-tons, including both internal combustion trucks (gasoline, diesel, LPG, and CNG) and electric trucks. Toyota Industries maintains a top share of the forklift market, capturing 43% of the Japanese market and 23% of the global market (internal estimate) in 2006. In 2000, we acquired BT Industries AB of Sweden, the world's leading supplier of warehouse trucks as a wholly-owned subsidiary. In 2001, we took over the industrial equipment sales and marketing operations of Toyota Motor Corporation and established TOYOTA Material Handling Company, an in-house company that integrates manufacturing and marketing operations. In order to maximize our group strengths, we have since established the Toyota Material Handling Group, which combines the operations of TOYOTA Material Handling Company and BT Industries.

Since the founding of Toyota Industries, the textile machinery business has been engaged in a continuous unbroken line of operations, offering spinning machinery (which spins bundles of fibers into yarn) and weaving machinery (which weaves yarns into fabric) to customers throughout the world. Textile machinery has evolved over the years to embody a wide range of highly advanced technologies, such as control, communications, and mechatronics technology.

Our mainstay air-jet loom boasts the number one share of the global market and we believe that we are held in high regard throughout the world as the leading company in the spinning machinery industry.

Toyota Industries has long offered world-leading products as a car-conditioning compressor manufacturer. We believe that variable-displacement compressors (which automatically control cooling capabilities) and fixed-displacement compressors (which are highly reliable in harsh environments, lightweight, and feature upgraded functions) are giving us a dominant share in the global market.

Recently, Toyota Industries developed an electrically driven compressor for hybrid vehicles. Toyota Industries is also currently working to develop next-generation compressors, such as a CFC-free CO2 refrigerant compressor.

Toyota Industries’ vehicle business manufactures automobiles under consignment from Toyota Motor Corporation. With our accumulated and proven experience in manufacturing mainly compact and midsize automobiles, Toyota Industries’ vehicle business is currently manufacturing two models: the Vitz (Yaris overseas) and the RAV4 for Europe and the United States.

Through our untiring pursuit of improvements and reforms to our production operations using the Toyota Production System (TPS), Toyota Industries’ vehicle business has won high acclaim within the Toyota Group for its top-class quality and quick production launch.

Our diesel engines in particular, which were developed in collaboration with TMC, are lightweight and offer high power in addition to lower noise and vibration. We are proactively promoting the development of technologies that will reduce the impact of our engines on the environment, such as through cleaner exhaust emissions.

Toyota Industries’ engine business manufactures diesel and gasoline engines ranging in capacity from 1,500cc to 5,200cc. Our automobile engines are manufactured under consignment from Toyota Motor Corporation (TMC) and installed on designated Toyota vehicles. Our industrial engines are installed on forklifts of Toyota Industries and gas engine-driven heat pumps.

Toyota Industries’ electronics business produces power electronics components for automobiles, liquid crystal displays, and semiconductor package substrates. We are continuing to strengthen our efforts in the development and production of electronic components and equipment used in automobiles, such as compact, highly efficient, and lower cost DC-DC converters, and DC-AC inverters for use in vehicles, that will enable home appliances to be used inside the vehicle. In 1997, we established ST Liquid Crystal Display Corp. (STLDC) as a joint venture with Sony Corporation to manufacture liquid crystal display panels, while in 1998, TIBC Corporation was established as a joint venture with Ibiden Co., Ltd. to produce semiconductor package substrates.

In 2002, Toyota Industries launched its Advanced Logistics business, which develops logistics systems for our customers and provides comprehensive management and operation services for our customers’ logistics centers. We are currently working on the rationalization of logistics operations for various industries by making use of the experiences that we have acquired in our development, manufacturing, and sales of materials handling equipment and systems. As a member of the Toyota Group, we are also drawing upon kaizen (continuous improvement) know-how acquired from our experience at production sites. Toyota Industries aims to reform logistics operations in Japan by proposing comprehensive solutions for planning, building, and operating logistic centers, while optimizing processes throughout the entire supply chain.
Social and Environmental Report 2007

Toyota Industries recognizes our responsibility as a global leader in forklifts. In order to fulfill this responsibility, we continually enhance our activities in the area of research and development of new products that anticipate customer needs, and ensure the continuous improvement of quality, sales, and service to achieve customer satisfaction. We expect to continue to take the initiative and contribute to society by attempting to ensure that we meet this responsibility.

In fiscal year 2006, the Toyota Material Handling Group (TMHG) began operations by combining the operations of TOYOTA Material Handling Company and our overseas subsidiary, BT Industries. This framework enables these two companies to increase their mutual understanding through joint development of new products and production preparation. Based on the principle of “the customer comes first”, TMHG will pursue business activities that will continue to gain the confidence of our customers.

Forklifts play an important role in our customers’ manufacturing and distributing processes, so our customers expect their forklifts to work continuously without breaking down. We believe that this makes reliability and durability the two key factors that our customers expect from our forklifts. We gave reliability and durability top priority in the development of the Geneo, launched in Japan in September 2006, with an emphasis placed on safety, the environment, and ease of operation.

We have built a global network for sales and after-sales service to better serve our customers. The forklift industry differs from the auto industry, where customers go to dealers’ showrooms to choose a vehicle. Our sales staff and service mechanics actually visit our customers’ factories, warehouses, and other premises where our products are used to observe and analyze our customers’ needs, operating conditions, and environment. They then propose optimized solutions, taking into account efficiency, safety, environmental performance, and other factors. Other support services that we offer our customers include regular servicing, recommendations for servicing and repairs appropriate to the operating situation, and safety training seminars. (See topics.)

To meet our customers’ demands for improved efficiency and quality of materials handling services, we have also developed a wide range of materials handling equipment and logistics management systems, as well as proposing improvements based on the principles of the Toyota Production System (TPS). By helping our customers to ensure a safe, efficient, and well-organized workplace, we hope to help them reap the benefits of using our products, such as simultaneous cost reductions and efficiency improvements, the prevention of potential losses from down-time or low efficiency, and of course, a safe working environment.
Supporting Our Distributors and Dealers Worldwide

As part of our commitment to providing better sales and after-sales service, Toyota Industries provides comprehensive support to its distributors and dealers throughout the world. We provide materials for sales promotions and solutions proposals to help sales staff to provide even better proposals to our customers. Other ways in which we help our distributors to improve the quality of their sales and after-sales service include the introduction of a certification program to facilitate proper recognition of skills, and to motivate sales staff and service mechanics, and the provision of well-organized training to upgrade their skills.

Considering the Work and Global Environments

Forklifts are closely linked to customers’ costs and their working environment, therefore highlighting the need for environmental consciousness. In internal combustion engine forklift development, we have made efforts to improve fuel efficiency, decrease the amount of harmful substances, such as NOx, found in the emissions, developed DPFs (diesel particulate filters) and low-emission trucks (which use LPG and CNG), and reduced overall noise levels. Electric forklifts have also become quite popular, as we have achieved the same level of performance by utilizing an AC motor system that extends running time and improves energy efficiency.

As customers become more and more aware of their working environments, more electric trucks are being introduced for indoor use. Certain challenges remain in this area however, such as initial costs and the down-time required for recharging batteries. We are also promoting the sale of low-emission trucks (that use LPG and CNG) and the development of environmentally conscious products. R&D activities to ensure cost reductions, better performance, and shorter recharging time of electric trucks are other examples of our efforts.

Hybrid technology is another greatly anticipated technology for achieving major improvements in the fuel efficiency of internal combustion engine forklifts. Drawing on the understanding of hybrid technology and parts available within the Toyota Group, Toyota Industries has developed a highly efficient hybrid system for forklifts that is reliable, durable and inexpensive. A concept model of this hybrid forklift was revealed at Logis-Tech Tokyo 2006 in September. We believe that the hybrid forklift provides the same performance as conventional internal combustion forklifts, but with major improvements in fuel efficiency, providing excellent performance in terms of both the environment and economy. Technological development for the commercialisation of the hybrid forklift is continuing. In 2005, we exhibited the prototype of our fuel-cell forklift and attracted a great deal of attention. With the comprehensive technology of the Toyota Group, we are working toward developing it for practical use.

We are also promoting recycling and responsible disposal activities together with our dealers. Forklifts have a high recycling rate because they are made mainly of steel and iron. However, proper treatment by specialist companies is necessary when disposing of oil used in the hydraulic systems for loading and unloading, and the lead batteries used in electric trucks.

We ensure that dealers carry out the necessary disposals properly when performing maintenance, parts replacement, and trade-ins. As the number of electric forklifts in operation continues to increase, our industry must deal with the issue of proper disposal of spent batteries.

TOPICS | The Start of a Driving Program for Forklift Operators

Spreading safe driving skills and contributing to safe operation and the elimination of accidents

Toyota Industries has continued to improve the “safety” of forklift. It has developed an original system, “SAS”, to contribute to safe operation and improve operating efficiency. This system has been equipped on the Geneo series of forklift and has achieved a level of safety that is top in the world. However, many of the accidents that occur at the worksite are caused by human error. Therefore, it was thought that safety countermeasures are necessary not only from the machinery side, but also that maintaining and improving the safety awareness of the operators is essential as well. In accordance with this, the “TOYOTA Material Handling Customer Center”*2 (located in Ichikawa City, Chiba Prefecture) our general exhibition facility for materials handling equipment, was expanded and a “safe driving program” aimed at re-educating operators about safe driving was started at this facility.

The “safe driving program” is targeted at certified operators and they will learn from real examples of past accidents about the kinds of operations that are dangerous. They will also receive thorough reinstruction about safe driving through special training in how to predict dangerous outcomes before they occur. This re-education for certified operators is a proactive initiative to eliminate accidents and problems.
The major textile producing countries in recent years are China, India, Pakistan, and Turkey. China, in particular, is the world’s largest textile producer in terms of production volume of synthetics, cotton yarn and silk thread, and export volume of clothing materials. The Chinese government has launched a number of industry promotion policies, including increasing the percentage of shuttleless looms from 28% to 40%, and increasing the percentage of comber yarn from 25% to 30% over the next five years starting from 2006. These steps are part of the Chinese government’s bid to transform the country from one that produces a large volume of textiles, to a country that is excellent in terms of quality, and which will be held in high regard by advanced markets. China is aiming to become the top textile producing country in the world, in both name and reality.

What supports the textile industry in China is Toyota Industries’ air-jet loom, which has the largest global market share. The air-jet loom inserts the weft yarn by air jet, significantly improving the productivity of the weaving process compared to the time required when the weft-inserting process relied on manual labor. In addition, with air-jet looms, premium textiles such as corduroy and cloth for down blankets can be weaved. The air-jet loom however, is machinery that is difficult to manufacture, even in China where remarkable developments in technology have been made.

Four years after its launch in February 2003, Toyota Industries’ JAT710 air-jet loom, continues to be extremely popular in China. In addition to the inclusion of a monitoring system that makes it easy for the customer to manage manufacturing procedures, the machinery attains high speed operation of up to 1,250 rpm. A reduction in air consumption of around 20% compared to the previous model also means significant energy savings. It has also contributed to improvements in the working environment, as vibrations have been cut by around 30% compared to the previous model.

Environmental Responsibilities
- To help curb global warming by reducing the amount of energy consumed during operation
- To reduce noise and vibrations during operation

Social Responsibilities
- To maintain and improve the reliability and durability of our products
- To provide after-sales service to enable customers to continue to use our products safely and efficiently

Demands for Air-Jet Loom in the World and China

<table>
<thead>
<tr>
<th>Year</th>
<th>Demand (Thousand Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>16</td>
</tr>
<tr>
<td>2006</td>
<td>19</td>
</tr>
<tr>
<td>2007</td>
<td>23</td>
</tr>
</tbody>
</table>

Sales Units of Toyota Industries’ Air-Jet Loom

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales Units (Thousand Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>7</td>
</tr>
<tr>
<td>2006</td>
<td>8</td>
</tr>
<tr>
<td>2007</td>
<td>10</td>
</tr>
</tbody>
</table>

Responding to Customer Demands — from Product Development to After-Sales Service

The major textile producing countries in recent years are China, India, Pakistan, and Turkey. China, in particular, is the world’s largest textile producer in terms of production volume of synthetics, cotton yarn and silk thread, and export volume of clothing materials. The Chinese government has launched a number of industry promotion policies, including increasing the percentage of shuttleless looms from 28% to 40%, and increasing...
Drivers assume that their car air-conditioning system will not break down, and if the air-conditioning system is not working well, it can reflect badly on the reputation of the car itself. As a specialist in compressors for car air-conditioning systems, it has been Toyota Industries’ unswerving goal to ensure that its compressors continue to perform at a high level for as long as possible. Towards this end, we have pursued more power efficient, smaller, and lighter compressors with reduced noise and vibration. The compressor is an indispensable component for maintaining cabin comfort. However, because it uses the engine’s power and is located in the front of the vehicle, the more power-efficient, compact, and lightweight it is, and the less noise and vibration it produces, the better.

In terms of environmental impact, the vast majority of CO₂ emissions caused by car air-conditioning compressors over their life cycles are due to fuel consumption while the air-conditioning is operating. Compressors therefore need to be made more power-efficient in order to reduce their fuel consumption.

Although CO₂ emissions during the manufacture of compressors are lower than during their use, the majority of emissions that occur during the manufacturing stage are due to the manufacture of materials, especially aluminum die-casts. Consequently, by making the compressors smaller and lighter, we can help to reduce CO₂ emissions from the manufacturing process. Looked at in these terms, making our products more compact and lightweight is our greatest responsibility as a compressor manufacturer both in social and environmental terms.

To achieve this, we use computer-aided engineering (CAE) to optimize basic specifications and the dimensions of each part. Specifically, we have reduced excess thickness by optimizing die-cast shapes using flow analysis and shape optimization software. Other efforts to reduce the size and weight of our compressors include the development of die-casting methods to cut oversize for machining and increasing the number of “process-less” parts.

Another important challenge is to prevent the leakage of CFC substitutes (greenhouse substances), which are currently used as refrigerants. We are also pursuing a range of research and development activities, including research into natural and next generation refrigerants to replace CFC substitutes.

New Electric Compressor ES34

In fiscal year 2007, we developed the ES34 inverter-integrated electric compressor for large hybrid vehicles. This model is used for the Lexus LS Hybrid in 2007.

The ES34 meets the high levels of quietness required for the Lexus flagship series and also ensures the same installation capability as belt-driven compressors. The weight to cooling capacity has been reduced by 14% compared to the previous model (ES27), thanks to a uniquely designed motor and a compact inverter.
Vehicle Business

Striving for Even Higher Standards of Production as an Automaker

Environmental Responsibilities
• To reduce the environmental impact of production
• To abolish the use of restricted substances

Social Responsibilities
• To ensure safety throughout the production stage and to pursue QCD (Quality, Cost, and Delivery)

Production Units of Vehicles

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimate (Thousand units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>228</td>
</tr>
<tr>
<td>2006</td>
<td>297</td>
</tr>
<tr>
<td>2007</td>
<td>350</td>
</tr>
</tbody>
</table>

Production Preparation Loads

- Estimates
- Plans
- Results

50% Decrease of Total Loads

Spreading Entire Loads

Establishing a Business Culture to Improve and Take on New Challenges Continuously

As an experienced manufacturer of compact and midsize vehicles on consignment from Toyota Motor Corporation (TMC), our vehicle business is responsible for realizing quality, low cost, and delivery that satisfies customers. The entire division comes together to strive for improvement and innovation in unison and always strives to realize the most advanced manufacturing.

Our vehicle business has been manufacturing the popular Vitz (Yaris outside Japan) since 1999 and the RAV4 since 2001 under consignment from TMC and continuously produces them at high standards. In that time, there has not been a single case of a serious quality problem in the manufacturing process. In competition with the other automobile manufacturers of the Toyota Group throughout the world, Toyota Industries’ vehicle business continues to maintain high standards in terms of quality, low-cost, and delivery. In 2006, we once again earned the Superior Quality Performance Award presented to suppliers by TMC.

In addition, we give top priority to the safety of our employees, (including the growing number of temporary workers) during the production process and continue to pursue thorough safety management systems in the workplace.

Our efficiency in carrying out production preparations that enable us to begin production in a shorter period is also highly renowned. During the full-model change of the new-model Vitz (launched in Japan in February 2005) and the new-model RAV4 (launched in Northern America in December 2005 and in Europe in January 2006), we carried out reform of production preparation processes that went beyond conventional ideas, and attained excellent results.

In the past, during the planning of operation processes and the specifications of facilities, we confirmed our plans by first discussing various issues while referring to drawings, and then making an actual production line. We would then begin to solve any problems that arose. In the recent model changes for the Vitz and RAV4, however, we implemented a production line simulation at the planning and conceptual stages using three-dimensional data (three dimensional images), thereby bringing specification discussions forward in the planning process and increasing efficiency.

Furthermore, using virtual training and virtual manuals (moving manuals) that employ three-dimensional data, we shortened the work training period and enhanced production accuracy. In addition, through project activities that removed every conceivable barrier between departments, such as production engineering, quality assurance, and manufacturing, we created a system where decisions could be made and implemented more quickly.

These improvements reduced the total production preparation load by 50% and spread that load more evenly across the entire production preparation process. Furthermore, at the request of TMC, members of our manufacturing department participated in production preparations for the Yaris in France utilizing their experiences in Japan.
Engine Business

Responding to Customer Confidence and Striving for Environmental Conservation

Environmental Responsibilities
- To help curb global warming by conserving energy during operation
- To comply with the environmental regulations of each country and region
- To help curb air pollution from emissions
- To comply with voluntary environmental standards and reduce the amount of waste produced by extending maintenance intervals

Social Responsibilities
- To maintain and improve the reliability and durability of our products
- To improve fuel efficiency
- To comply with the regulations of each country and region

Production Units of Gasoline and Diesel Engines

<table>
<thead>
<tr>
<th>Year</th>
<th>Diesel</th>
<th>Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>138</td>
<td>319</td>
</tr>
<tr>
<td>2006</td>
<td>151</td>
<td>362</td>
</tr>
<tr>
<td>2007</td>
<td>349</td>
<td>489</td>
</tr>
</tbody>
</table>

Reducing the Environmental Impact and Improving the Quality of Clean Diesel Engines

Toyota Industries, as a diesel engine manufacturer in the Toyota Group, aims to improve its technological capabilities and contribute to Toyota Motor Corporation’s (TMC) development and production activities, including its overseas operations.

While diesel engines are more fuel-efficient and discharge less CO₂ than gasoline engines, they emit more NOx and particulate matter. In an effort to enhance the environmental performance of our diesel engines, we have implemented post-treatment measures for NOx and particulate matter, but our biggest challenge for the engines themselves is to improve their fuel efficiency and to reduce their CO₂ emissions. In collaboration with TMC, Toyota Industries has realized significant reductions in environmental impact by introducing a number of new technologies that raise the fuel efficiency of diesel engines. The European emission regulations, EURO 4, which came into effect throughout the EU in 2005, require new automobiles to reduce emissions of particulate matter to one tenth of that of conventional automobiles. Our AD diesel engines, which we began producing in March 2005, satisfy the requirements of EURO 4. We are now preparing to satisfy EURO 5, even stricter regulations that are set to be introduced after 2009. In October 2006, we expanded our testing center to boost our development of next generation clean diesel engines.

Bringing Our Environmentally Friendly Foundry Plants to the World

Our three plants in Japan, Hekinan, Higashichita, and Kyowa plants are charged with the task of adopting newly developed manufacturing technologies ahead of their overseas counterparts and perfecting them in Japanese production processes before transferring them to our overseas production bases. A good example of this is our casting technology for foundry parts that are essential to engine manufacture. The responsibility for the adoption, perfection, and transfer of this technology rests with our Higashichita Plant. In 2006, this plant received a Technology Award from the Japan Foundry Engineering Society for its development of CV foundry production technology for use in cylinder blocks for high-output diesel engines. This technology was applied to the 1VD diesel engine. (See topics)

On the environmental front, we have ensured safety by separating the work zones and equipment, and achieved zero waste, as well as CO₂ emission reductions through the introduction of environmentally friendly and energy-saving equipment and monitoring systems. We have thus succeeded in attaining world-class energy conservation and productivity in the production of die-cast cylinder blocks for AD engines. We have transferred this spirit of environmental protection to our plants in China, Poland, and other countries throughout the world.

Production of New Diesel Engine (V8) Starts

To raise fuel efficiency and reduce CO₂ emissions, we worked to develop a lighter engine. This resulted in Japan’s first mass production of a cylinder block made of lightweight and high strength vermicular graphite cast iron (FCV). In December 2006, we started production of the 1VD-FTV diesel engines with a common rail system that uses this FCV cylinder block.
Hybrid vehicles have attracted significant attention from around the world with their superior environmental friendliness. Toyota Industries’ electronics business produces DC-DC converters, which are an extremely important component for hybrid vehicles. They convert the high voltage of the main battery to a lower voltage to recharge the auxiliary battery and to supply power to the lights, wipers, horns, and other in-vehicle devices, as well as to operate the electric power steering. By making further improvements to our products so that they are more compact, lightweight, have higher efficiency, and lower costs we believe that we are contributing to the performance and popularization of hybrid vehicles, and hence contributing to a reduction in their environmental impact. Given the direct effect of the performance and function of our products on a vehicle’s fuel consumption, costs, and safety, the production of defective components is unacceptable. Toyota Industries has, therefore, been working on activities to improve market quality since 2004. In 2005, we started production of DC-DC converters for EPS (electric power steering) used on the Lexus (hybrid vehicle models), the top-of-the-line luxury brand of Toyota vehicle.

The electronics business also manufactures DC-AC inverters that convert direct current to alternating current. We aim to become the top supplier of power electronics devices, such as converters and inverters, and electric power systems for motor vehicles. We will continue to work on enhancing design, production preparation, and initial management, to ensure a stable supply of high quality products and to improve production efficiency in order to meet anticipated increases in demand.

Environmental Responsibilities

- To manufacture core components for environmentally friendly hybrid vehicles
- To help curb global warming through energy conservation and power efficiency during use by making our products more compact, light weight, and efficient

Social Responsibilities

- To maintain and improve the reliability and safety of our products
- To make our products more compact, lightweight, efficient, and lower in cost
- To ensure their reliability as an emergency power source in times of natural disaster

Our Quest to Become the Leading Supplier of Power Electronics Devices and Systems for Vehicles

Hybrid vehicles have attracted significant attention from around the world with their superior environmental friendliness. Toyota Industries’ electronics business produces DC-DC converters, which are an extremely important component for hybrid vehicles. They convert the high voltage of the main battery to a lower voltage to recharge the auxiliary battery and to supply power to the lights, wipers, horns, and other in-vehicle devices, as well as to operate the electric power steering. By making further improvements to our products so that they are more compact, lightweight, have higher efficiency, and lower costs we believe that we are contributing to the performance and popularization of hybrid vehicles, and hence contributing to a reduction in their environmental impact. Given the direct effect of the performance and function of our products on a vehicle’s fuel consumption, costs, and safety, the production of defective components is unacceptable. Toyota Industries has, therefore, been working on activities to improve market quality since 2004. In 2005, we started production of DC-DC converters for EPS (electric power steering) used on the Lexus (hybrid vehicle models), the top-of-the-line luxury brand of Toyota vehicle.

The electronics business also manufactures DC-AC inverters that convert direct current to alternating current. We aim to become the top supplier of power electronics devices, such as converters and inverters, and electric power systems for motor vehicles. We will continue to work on enhancing design, production preparation, and initial management, to ensure a stable supply of high quality products and to improve production efficiency in order to meet anticipated increases in demand.

Electronics Business

Contributing to the Reduction of Environmental Impact through the Spread of Hybrid Vehicles

We have also engaged in an another electronics business, not only for automobile manufacturers, but also for manufacturers of personal computers and mobile devices. ST Liquid Crystal Display Corp (STLCD), a joint venture with Sony Corporation, manufactures low-temperature polysilicon TFT-LCD panels, a cutting-edge liquid crystal display, for use in digital still cameras, video cameras, PDAs, and mobile phones used across the globe. TIBC Corporation, a joint venture with Ibiden Co., Ltd. manufactures the latest semiconductor package substrates for use in personal computers, mobile phones, IC cards, etc.

We are also supporting the multimedia capabilities of personal computers, portable devices, and some automobiles with our proprietary digital terrestrial television tuner with encryption and imaging technologies.

TOPICS

22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition (EVS22)

The EVS22 is the world’s largest international symposium dedicated to electric vehicles, including hybrid and fuel cell electric vehicles, and was held at the Pacifico Yokohama from October 23 through 28. We exhibited DC-DC converter and DC-AC inverter.

Toyota Industries’ exhibition booth in EVS22
Toyota Industries entered the logistics business in 2002 in response to requests from many of our customers to help them to improve their logistics operations that draw on Toyota’s kaizen (continuous improvement) principles, which we have cultivated in production operations. Despite launching this new business with kaizen as our advantage, improvements made at distribution centers had only a limited effect and did not greatly satisfy our customers. We decided, therefore, to pursue the total optimization of logistics operations from the standpoint of the product’s final purchasers, i.e. shoppers. This meant applying kaizen across the entire supply chain, from the distribution centers to both the production sources upstream and through to the stores downstream. This is a “market-in” approach to logistics that can supply the required products when they are needed in the quantities that they are needed in accordance with the demands of the market. By applying kaizen to the entire logistics supply chain, we believe that we can achieve results in more processes and on a greater scale, thus making more customers happy.

Toyota Industries’ AL business does not merely engage in establishing and operating logistics centers for our customers. We assist customers, particularly retailers, with in-store distribution problems, such as on their shelves or in backyard operations, by introducing Toyota Production System (TPS) principles, thus promoting reform from a comprehensive perspective that is not limited just to the distribution centers. In the future, we expect to proactively provide solutions, including the sharing of logistics operations in particular industries and improving the production sites of manufacturers. Our ultimate goal is to achieve “total logistics optimization” that provides comprehensive, integrated solutions for the entire process from the production sites to the checkout counter of retail stores and through to the end customer.

In the five years since launching this business, our customer base has expanded to include many industries, such as the food, daily goods, pharmaceutical products, home improvement, and mail order industries. In the past, logistics and logistics departments tend to be regarded as cost centers that only generated expenses. In order to change the way industries perceive logistics, improvements are needed that will turn logistics operations into profit centers with high levels of added value, as well as the thorough implementation of compliance, which is the premise for such improvements. The pursuit of “total logistics optimization” should enable the reduction of excessive loading and labor, but it is first necessary to increase awareness about regulatory compliance in the industry overall.

Based on this belief, Toyota Industries established the Compliance Group within its Advanced Logistics Division in March 2005. The Compliance Group organizes the massive quantities of laws and regulations according to the relevant industry and operational theme, and prepares and uses checklists so that we can check the status of its compliance with those laws and regulations. Due to taking this initiative with regard to our compliance efforts, we require other logistics companies with which we cooperate to also do the same.

The prime social responsibility of Toyota Industries’ Advanced Logistics business is to attempt to achieve total logistics optimization and transform logistics operations into a high value-added business.
Responsibility to the Stakeholders of the Toyota Industries Group

Developing Our Business Operations while Remaining Conscious of Our Responsibilities

Management

Strengthen corporate governance and enhance compliance

Our Customers

Provide products and services that satisfy our customers’ needs

• Maintain and improve quality
• Offer better sales and services
• Reflect customer needs in product development proactively
• Promote communication with customers
• Disclose product information honestly and properly
• Protect customers’ confidential information and personal data
• Improve quality throughout the supply chain

Our Shareholders

Boost corporate value and enhance communication with shareholders

• Distribute returns to shareholders
• Develop businesses proactively
• Disclose information that is complete, accurate, and in a timely manner
• Improve our evaluations made by outside organizations
• Promote investor relations

The Global Environment

Consider the environment in product and service

• Reduce the amount of substances of concern used
• Reduce the environmental impacts associated with product use
• Disclose environmental data honestly and properly

Realize compatibility between environmental conservation and profit generation

• Prevent environmental accidents, etc.
• Improve our environmental evaluations by outside organizations
• Disclose environmental data honestly and properly

Graph 1: Breakdown of Sales by Customer (Consolidated) FY 2007

Sales ¥1,878.3 billion
- Toyota Motor Corporation 35.5%
- DENSO Corporation 6.7%
- Other 57.8%

Graph 2: Breakdown of Shareholders FY 2007

Total 325,840,640 shares
- Individuals, etc. 11.6%
- Foreign Corporate Entities and others 20.8%
- Financial Institutions 21.1%
- Other Corporate Entities 46.0%
Our Business Partners (Suppliers)

Construct cooperative relationships based on mutual trust and prosperous co-existence
- Procure supplies through open and fair processes
- Comply with laws and regulations to facilitate fair trade
- Take care of and support business partners
- Promote close communication with business partners

Our Local Communities

Ensure symbiosis with communities
Promote and support:
- Traffic safety
- Youth development
- Conservation of historic sites and traditional culture
- Arts and culture
- Social welfare activities
- Health and medical science
- Aid to disaster areas
- International exchanges

Our Employees

Ensure a workplace where each employee can work safely and enthusiastically
- Improve occupational health and safety
- Support employee health management
- Respect human rights
- Maintain employee-management relations based on mutual trust
- Provide secure employment opportunities
- Respect diversity and promote equal opportunities
- Facilitate human resource development and create a motivating work climate
- Support employees in balancing their family and work commitments

Consider the environment in procurement processes
- Control hazardous substances contained in procured raw materials and parts
- Support environmental conservation activities

Promote environmental conservation and environmental education in local communities
- Support nature protection activities and environmental conservation activities in local communities
- Prevent atmospheric, water, and soil pollution
- Respect biodiversity
- Prevent environmental accidents, etc.
- Promote environmental education and raise awareness among local residents
- Disclose environmental data honestly and properly

Raise employee awareness about the environment and promote their involvement in environmental activities
- Promote job performance that considers the environment
- Implement environmental education and awareness-raising activities
- Support voluntary actions of employees to conserve the environment

Graph 3: Percentage of Suppliers Subject to the Subcontract Act (Non-consolidated) FY 2007

Graph 4: Social Contribution Activities FY 2007

Graph 5: Number of Employees (Consolidated)

- Total Employee:
 - Approximately 1,500 Companies
- Other (47%)
- Companies Subject to the Subcontract Act (53%)
- Total $622 million
- (A related article can be found on page 36)
Toyota Industries believes that enhancing the long-term stability of corporate value and maintaining society’s confidence in the company through practicing its corporate philosophy and promoting social responsibility are extremely important management issues. Taking the enrichment of society through business activities as a basic premise, we therefore consider it vital to build good relationships with stakeholders ranging from shareholders and customers to business partners, local communities, and employees.

With this in mind, we are working to maintain and enhance management efficiency and the fairness and transparency of company activities by strengthening corporate governance. We are building a corporate governance system that can respond quickly and flexibly to changes in the business environment, as well as working to strengthen management supervision and to provide timely disclosure of accurate information.

Toyota Industries holds Board of Directors meetings every month to make decisions on important management matters and monitor business operations. A Management Committee has also been established to discuss important matters such as corporate vision, management policies, medium-term business strategies, and major investments.

The company has adopted a divisional organization system and delegated authorities to division in each operation. So, a Business Operation Committee has been set up to enable the President to oversee business operations periodically through the General Managers of each division. At a Management Council meeting, Directors and Managing Officers share business operations reports every month. The company is striving to increase the efficiency and speed of management as well as facilitate appropriate judgment.

Members of the Respective Committees and Meeting Frequency

- Board of Directors: Sixteen Directors (including one external Director) and Corporate Auditors participate in monthly meetings.
- Management Committee: Meetings are held as needed, and are attended by the Chairman, the President, Directors above the Executive Vice President level, and other relevant Directors and Managing Officers, as specified by the President and according to the matters in question.
- Management Council: Directors and Managing Officers participate in monthly meetings.
- Business Operation Committee: The President, Executive Vice Presidents, and divisional General Managers participate in two regular meetings, before the interim and annual closing of accounts.

Streamlining the Board of Directors and Creating the New Position of Managing Officer

In June 2006, Toyota Industries introduced a new executive management system as part of our efforts to achieve our “2010 Vision”, which was established in October 2005 (See page 4). The aim of this was to speed up the company’s responses to challenges posed by our accelerating globalization and the expanding scale of our business operations.

Outline

1. Streamlining the Board of Directors
 The number of directors has been reduced to speed up decision-making.

2. Creating the New Position of Managing Officer
 Managing Officers will be able to apply themselves exclusively to the execution of the respective businesses for which they are responsible.
Toyota Industries has chosen to maintain a Corporate Auditor/Board of Corporate Auditors system. The Board of Corporate Auditors consists of five corporate auditors, three of whom are independent auditors who bring an outsider’s viewpoint and an auditing perspective combined with professional experiences and careers to our internal monitoring function. The Board of Corporate Auditors meets once a month to discuss and make decisions on important matters, such as auditing policy and reporting.

The Corporate Auditor’s Office, which is staffed by five dedicated personnel who work directly for the Corporate Auditors and are not under the authority of the company Directors, has been set up to reinforce the auditing of duties carried out by the Directors.

The Corporate Auditors also cooperate with independent auditors and the Audit Office, which is in charge of internal audits (please refer to the section on “Compliance” on pages 19-20 for further details), receive reports as appropriate and, where necessary, conduct additional surveys.

Further steps to strengthen this framework were taken with the set up of the Compliance Subcommittee, the Crisis Response Subcommittee, the Data Security Subcommittee, and the Regional Society Contribution Subcommittee under the aegis of the Corporate Code of Conduct Committee.

Risk Management

Based on a collection of risk case studies, comprising examples of conceivable risks that could affect the company, together with their countermeasures, each division and department has adopted strict measures to prevent risk from materializing. In addition, risk with the potential to affect business operations is reevaluated and reviewed on a regular basis, and disclosed in financial statements. The Audit Office endeavors to reduce risk by monitoring business processes, enforcing compliance and strengthening control systems to ensure the reliability of financial information. Based on the company’s “Crisis Response Manual”, countermeasure organizations and procedures have been established to deal with issues or incidents that might arise, while each division and department has set up recovery systems.

The business and other risks disclosed in our financial statements for the year ended March 31, 2007 relate to the following issues:

- Principal customers/product development capabilities/intellectual property rights/product defects/price competition/reliance on suppliers of raw materials and components/environmental regulations/alliances with other companies/exchange rate fluctuations/share price fluctuations/effects of disasters, power blackouts, and other incidents/latent risks associated with international activities/retirement benefit liabilities.

Establishment of an Internal Control Structure

To comply with the Corporations Law that came into effect in Japan in May 2006, the Board of Directors of Toyota Industries decided on a “Basic Policy for the Establishment of an Internal Control Structure” that same month. The company also established a new section, called the Internal Control Office. In 2007, we started a project team in preparation for compliance with the Financial Instruments and Exchange Law, which was enacted in June 2006.

Set Up Committees to Address Important Company-Wide Matters

In order to deal with compliance – both legal and corporate ethics – and environmental conservation as key company-wide issues, Toyota Industries has established the Corporate Code of Conduct Committee, the Environmental Committee, the Export Transaction Control Committee, and the Stock Option Committee to discuss and monitor the state of management and corporate activities.

Enhancing Management Transparency

To enhance management transparency, Toyota Industries is working to strengthen its accountability by publishing quarterly financial statements and establishing an Investor Relations Office to provide information to shareholders and investors. In 2005, it also set up an Information Disclosure Committee to ensure the completeness, appropriateness and timeliness of important information disclosed in financial statements and other materials.
Compliance

Not Just Complying with the Laws and Regulations, but also Respecting Local Culture and Customs

The Corporate Code of Conduct Committee Leads the Way in Enforcing Compliance

Toyota Industries perceives compliance to be observing laws and regulations in addition to respecting local culture and customs in a manner that is in tune with the changing times. The Corporate Code of Conduct Committee plays a central role in strengthening the company's systems and mechanisms, stipulating conduct guidelines, and making every effort to ensure that all employees are informed through education and enlightenment activities. Toyota Industries is also tackling the issue of enhancing compliance at domestic and overseas affiliates. In addition, the Purchasing Department carries out compliance checks of our business partners.

The Corporate Code of Conduct Committee is in charge of controlling the group's overall corporate activities regarding compliance and responses to crises. Consisting of Directors, as well as Managing Officers and Corporate Auditors, the Committee meets at appropriate times to confirm the status of any important incidents that may have occurred, along with the countermeasures and responses that were adopted. They then draw on these outcomes when deliberating the matters to be dealt with in the coming fiscal year.

Under the aegis of the Corporate Code of Conduct Committee, the company designated a number of departments as legal compliance departments to provide thorough instructions to other divisions and departments on legal compliance, while the company as a whole is currently undertaking further efforts to strengthen our compliance system. The company also established the Compliance Subcommittee and the Data Security Subcommittee. These Subcommittees are comprised of Chairmen who are nominated from among the directors and members of relevant divisions and departments, and meet each month to consider concrete measures aimed at boosting compliance based on individual action plans. The Audit Office and designated legal compliance departments cooperate in supervising the compliance of individual divisions, departments, and affiliates at home and overseas.

The designated legal compliance departments are also responsible for company-wide employee education programs centering on individual positions and specialties. The company also carries out various educational activities to enhance employee awareness.

In addition, lawyers from outside of the company are being invited to give regularly scheduled legal workshops for our Directors and Managing Officers.

Conduct Guidelines: “Handbook for Corporate and Employee Conduct”

To ensure thorough compliance throughout the company and among all employees, Toyota Industries compiled concrete conduct guidelines into the “Handbook for Corporate and Employee Conduct” (first edition 1988, revised in November 2006), and requires all employees to observe ethical and sensible behavior. The handbook declares that the company and all employees must, as a matter of course, be law-abiding, and clearly describes what is considered acceptable and unacceptable behavior from the viewpoint of corporate ethics. These conduct guidelines are the basis of our group's corporate activities and are further spread through ongoing education and training.

Designated Legal Compliance Departments Enforcing Compliance with Laws and Regulations

To ensure thorough compliance with the spirit and the letter of the law, eleven departments in our Corporate Center, including the Legal Department, serve as designated legal compliance departments that work to ensure compliance with relevant laws and regulations throughout the company. The individual departments draw up activity plans each fiscal year and maintain their familiarity with new legislation and revisions of laws and regulations. They also consider responses to revisions of existing mechanisms, streamline rules and manuals, ensure that the entire company is well-informed through in-house education programs, and confirm and direct compliance in related departments through compliance audits. The Corporate Code of Conduct Committee monitors these activities and, where necessary, puts forward proposals to the President in order to reinforce them.

Laws and Regulations under the Jurisdiction of Designated Legal Compliance Departments

<table>
<thead>
<tr>
<th>Division/Department</th>
<th>Laws and Ordinances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal</td>
<td>Corporations Law, Product Liability Law, Anti-Monopoly Law, Personal Information Protection Law, Securities and Exchange Law, etc.</td>
</tr>
<tr>
<td>Human Resources</td>
<td>Labor Standards Law and other labor-related legislation</td>
</tr>
<tr>
<td>General Administration</td>
<td>Traffic Laws, etc.</td>
</tr>
<tr>
<td>Accounting</td>
<td>Corporations Law, Securities and Exchange Law, Corporation Tax Law, Consumption Tax Law, etc.</td>
</tr>
<tr>
<td>IT</td>
<td>Unauthorized Computer Access Law, etc.</td>
</tr>
<tr>
<td>Purchasing</td>
<td>Subcontract Act, etc.</td>
</tr>
<tr>
<td>Safety, Health & Environment</td>
<td>Industrial Safety and Health Law, Environment-related laws, etc.</td>
</tr>
<tr>
<td>Plant Engineering</td>
<td>Energy-related laws, Construction-related laws</td>
</tr>
<tr>
<td>Intellectual Property</td>
<td>Unfair Competition Prevention Law, Patent Law, Copyright Law, etc.</td>
</tr>
<tr>
<td>Logistics</td>
<td>Foreign Exchange and Foreign Trade Control Law</td>
</tr>
<tr>
<td>R&D</td>
<td>PRTR (Pollutant Release and Transfer Register) Law</td>
</tr>
</tbody>
</table>

Towards Timely Information Gathering and Rapid Responses

“Report Criteria” Have Been Established to Speed up Identification of Serious Problems and Incidents

A “report criteria” scheme has been set up to facilitate rapid understanding of the situation and appropriate responses in cases...
where serious problems and incidents that may be in breach of compliance rules occur. The scheme establishes a mechanism whereby reports are submitted immediately to top management by Directors in charge of divisions and Corporate Center’s departments.

Report criteria provide concrete standards for making judgments on whether reports are necessary or not, and are linked with the problem-solving rules and manuals of each department.

Various other consultation desks have been set up to create a system that offers appropriate responses to the opinions and requests of customers and local residents, and to the troubles and questions raised by employees and their families.

The Compliance Monitoring System

The Audit Office, under the direct jurisdiction of the President, takes the lead in monitoring compliance and cooperates with the internal compliance audits carried out by designated legal compliance departments. Toyota Industries believes it is necessary to strengthen the system on an ongoing basis as internal compliance audits are playing an even greater role in compliance activities as the business expands and globalizes.

Toyota Industries carries out compliance audits at all its domestic affiliates - some 40 companies in total - including non-manufacturing affiliates of materials handling equipment business on a three year cycle. We have also set up a compliance auditing framework for our overseas affiliates, separated into three regions – North America, Europe, and Australia/Asia. Since fiscal year 2004, Toyota Industries North America, Inc. (a holding company in the U.S.) and the Audit Office have carried out compliance audits of operations in three-year cycles in North America and the Australia/Asian region respectively.

The results of compliance audits are communicated to the affiliates’ President and management, as well as to the General Manager of the responsible division. Both cooperate in making improvements to the relevant activities, and the Audit Office confirms the status and results at appropriate times.

With regard to our business partners, the Purchasing Department carries out compliance checks of Hoeikai, Toyota Industries suppliers’ association, with special emphasis on safety and the environment.

Response to Personal Data Protection

From fiscal year 2005, the Legal Department initiated an in-house education program for matters pertaining to personal information protection in response to the enforcement of Japan’s Personal Information Protection Law in April 2005. It also worked to disseminate information about the purpose of this law and an overview of the law and its corresponding matters throughout the company via our intranet and workplace meetings. It also strove to secure customers’ information by setting organizations and assigning managers to protect personal data.

Table 2 | Report Criteria Examples

<table>
<thead>
<tr>
<th>Business Area</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Assurance</td>
<td>Injury, accident or property damage caused by quality defects</td>
</tr>
<tr>
<td>Accounting</td>
<td>Discovery of covered up losses, accidents, criminal activities, information leaks</td>
</tr>
<tr>
<td>General Administration</td>
<td>Discovery of illegal payoffs</td>
</tr>
<tr>
<td>Safety, Health and Environment</td>
<td>Administrative penalties, serious accidents</td>
</tr>
<tr>
<td>Human Resources</td>
<td>Disciplinary actions</td>
</tr>
<tr>
<td>Purchasing</td>
<td>Illegal or illicit trade practices</td>
</tr>
<tr>
<td>Logistics</td>
<td>Noncompliance with trade control laws</td>
</tr>
<tr>
<td>IT</td>
<td>System outage caused by computer virus</td>
</tr>
</tbody>
</table>

Table 3 | Contact Points for Issues that Occur

<table>
<thead>
<tr>
<th>Issue Type</th>
<th>Issues Handled</th>
<th>Contact Point/Responsible Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Ethics</td>
<td>Consultations on doubts and issues concerning ethics, unlawful behavior and illegality</td>
<td>Outside attorneys</td>
</tr>
<tr>
<td>General Administration</td>
<td>Interface for various opinions, requests and information from people outside the company, such as local residents, and employees</td>
<td>General Administration Department</td>
</tr>
<tr>
<td>Physical and Mental Health</td>
<td>Health counseling from company doctors and nurses</td>
<td>Health Care Administration Office</td>
</tr>
<tr>
<td>Mental Health Counseling</td>
<td>Telephone consultations and interview counseling with external counselors</td>
<td>Health Insurance Association</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Consultation on problems relating to work and private life, financial problems, educational problems, nursing care problems</td>
<td>Toyota Industries Well Support Corporation</td>
</tr>
<tr>
<td>Equal Opportunity Employment for Men and Women</td>
<td>Consultation concerning equality of employment opportunities, support for workers with childcare responsibilities, rules of employment, etc.</td>
<td>Global Human Resources Department</td>
</tr>
<tr>
<td>Customer Consultation</td>
<td>Inquiries concerning products, quality, servicing, safety, etc.</td>
<td>Domestic Sales and Marketing Department, TOYOTA Material Handling Company</td>
</tr>
<tr>
<td>Law and Contract</td>
<td>Consultation on legal and contractual matters pertaining to operations</td>
<td>Legal Department</td>
</tr>
<tr>
<td>Subcontracting</td>
<td>Consultation on legal matters relating to the Law on the Prevention of Delay in the Payment of Subcontracting</td>
<td>Purchasing Department</td>
</tr>
</tbody>
</table>
Responsibility to Our Customers

Doing All We Can to Maintain and Improve Quality

Quality is a Key Management Issue

Toyota Industries’ founder Sakichi Toyoda once said that “A product should never be sold until it has been carefully manufactured and tested thoroughly and satisfactorily”. Adhering faithfully to his teachings, Toyota Industries believes quality is our lifeline and a key management issue.

Maintaining and improving quality is our most important responsibility to our customers, and forms the basis of our social responsibilities.

At Toyota Industries, the basis of our activities is “product quality”, which is embodied in the durability, safety, and eco-friendliness of our products. However, our entire workforce is committed to maintaining and improving the quality of all of the company’s activities, including “marketing quality” in sales and service and “total quality” in our corporate image and brand strength.

Establishing Day to Day Quality Assurance Systems

To develop and supply products from the customer’s viewpoint – this philosophy summarizes Toyota Industries’ comprehensive “market-in” approach.

In all processes, predetermined procedures must be carried out according to instructions in order to ensure that no defective items proceed to the next stage. This is vital for ensuring that the company only manufactures high-quality products.

Whenever any of Toyota Industries’ business divisions develops a new product, it uses a design review (DR) system to evaluate quality at all stages until customer satisfaction is achieved. This ensures that no product progresses to the next stage unless established target levels have been achieved.

Once new products are launched and important customer information reaches the quality assurance department of each division, it is fed back to the responsible department (such as design and manufacturing) and countermeasures are quickly developed. At the same time, the DR system is reviewed to prevent a recurrence of any problems in subsequent models.

While everything is done in the production process to prevent defective products from proceeding to the next stage of the production process or leaving the factory, we also proactively tackle quality improvements on five levels, including cleanliness and neatness.

In 2006, we started a new “Thank-you-for-finding-the-problem award” at Toyota Industries to honor associates who sensed something unusual or different in their work and thereby detected a defect in the early stages, as well as to honor their superiors who took the necessary actions to help solve the problem.

Reflecting Customers’ Opinions Directly in Quality Improvements

In manufacturing, Toyota Industries devotes enormous efforts to the research and development of new functions and other features, endeavoring to develop products that are ahead of the curve. Using the design review (DR) system, General Managers of divisions evaluate every step of the production process, from product planning to design, production preparations, production, initial quality, and customer satisfaction levels.

For example, in the textile machinery business, when we deliver new machines to textile manufacturers in various parts of the world, we ask them to evaluate the product for us. These comments not...
only help us in the development of new products, but also enable us to enhance our after-sales service.

In the materials handling equipment business, in which distributors and dealers handle sales and after-sales service, we attempt to ensure that customers can use our products in an excellent condition and that they are free of material defects. Distributors and dealers work together to optimize their response to customers while Toyota Industries has established customer consultation desks that enable us to interface with customers directly. The distributors, dealers, and Toyota Industries marketing staff also visit customers to conduct actual usage fact-finding surveys.

Individual comments and requests received from customers in this way are promptly fed back to the relevant section, such as design, and a response is then given to the customer through the dealers.

In addition to these day-to-day activities, since fiscal year 2006, TOYOTA Material Handling Company’s Global Quality Assurance Department has acted as a secretariat for the distribution via product delivery trucks of customer questionnaires about our products and services, a scheme that is initially being limited to Japan. The secretariat collects the results of these surveys every three months and posts them on the company intranet.
Quality Assurance across the Entire Global Supply Chain
As a company that supplies products to the global market, we believe that customer confidence in our quality is synonymous with the Toyota Industries brand, and is a precious element of our corporate value that must be preserved. We therefore aim to implement quality assurance activities that cover our entire global supply chain, including affiliates and business partners in Japan and overseas. (See the section on Responsibility to Our Business Partners on pages 25-26.)

All of Toyota Industries’ plants are certified in international standards for quality management systems (ISO 9001, etc) and we are making efforts to encourage our affiliates to obtain similar certifications.

We see certification in international standards such as these as a springboard towards the establishment of our own more advanced systems. If, after certification is obtained, our own systems exceed an international standard, making renewal of that certification unnecessary, then we may decide not to renew it at that time.

Dealing with Significant Quality Issues
In cases where serious quality issues arise, such as “accidents due to quality that result in personal injury, or property damage”, the Quality Assurance Department of the responsible division must, in accordance with our Rules for Dealing with Significant Quality Issues, minimize the trouble to customers by promptly devising countermeasures, while at the same time having the General Manager of the division report the issue to the President and the Executive Vice President in charge of quality. In addition, based on information provided to the Global Quality Control Department at the Corporate Center through the “Significant Quality Issues Notification Form”, the Director in charge of quality will carry out quality audits as necessary to prevent recurrence of the problem and ensure deployment of countermeasures in similar areas. This mechanism is also incorporated into our report criteria system used for collecting information pertaining to compliance, and functions in conjunction with that system.

For significant quality issues that require recalls, the division sets up Recall Preparation Conferences within divisions to devise countermeasures. Once the General Manager of the division submits a report to the President and the Executive Vice President in charge of quality, a report is filed with the relevant regulatory authority. The company also informs customers by direct mail, and carries out repairs and other measures free of charge as soon as possible. After confirming the actual progress of the recall, the President then submits a recall report and an implementation report to the relevant regulatory authority. The Audit Office at the Corporate Center also monitors whether these integrated mechanisms for dealing with market quality issues are functioning properly.

Quality Guidelines
Bearing these results in mind, we confirm significant quality issues that reflect last year’s quality problems and the President issues the President’s Guidelines (Quality Guidelines) to the entire company at the beginning of each fiscal year. The Executive Vice President in charge of Quality confirms the implementation of the Guidelines through the Quality Functional Committee, including special shop quality inspections held at the divisions each year.

In fiscal year 2008, in order to achieve “zero inconvenience”, every division and department will go back to the basics of “customer first”, fulfill each role, promote own-process completion activities, and never allow the outflow of defects from their own process.

Toward “Zero Inconvenience” to Our Customers,
Regarding Our Customers as the Next Step in the Production Process
Production has continued to expand in fiscal year 2006 and fiscal year 2007, and the percentage of temporary workers, particularly seasonal contract workers, has also risen steadily. In response, “Customer First”, “Zero Inconvenience” to our customers and, “Creation of a Workplace in which Every Worker Continually Pursues Quality First under Strong Leaders” were the slogans contained in the fiscal year 2008 Quality Guidelines.

Under this approach, it’s necessary for every leader in all of our workplaces to display leadership and encourage everyone to be properly aware of their roles. Therefore, we promote QC circle activities in which everyone participates, including seasonal contract workers. In the past, permanent employees in the engineering departments (design and manufacturing) of all divisions and some indirect administrative departments in the Corporate Center have participated in these kinds of QC circle activities, but today, seasonal contract workers also participate in these QC circles as much as possible during their working hours.
Toyota Industries sees the benefits of shareholders as one of its most important management policies, and seeks to enhance corporate value by pursuing proactive business development while working to expand and strengthen its business structure.

Based on this policy, we try to meet shareholder expectations by focusing on consolidated dividend payout ratios while giving due consideration to performance and funding demands.

The full-year dividend was ¥50 per share in fiscal year 2007, compared with ¥38 in fiscal year 2006. The dividend payout ratio has continued to rise for the past three years, and the consolidated dividend payout ratio was 26.3%, 0.3 percentage points higher than the previous fiscal year. In order to secure profits for shareholders in the future, retained earnings are due to be applied in order to enhance product marketability, streamline and strengthen domestic and overseas production and sales structures, develop new business sectors, and acquire treasury stock.

There has also been an increase in the number of occasions when the company has received strong appraisals regarding its corporate social responsibility from external organizations.

Toyota Industries has been evaluated by the stock market as a company that is proactively fulfilling its social responsibilities, and its shares have been incorporated into the FTSE4Good and other world-standard SRI indexes, as well as various SRI fund (investment trust) portfolios. (SRI: Socially Responsible Investment.) In addition to evaluations that use financial analyses, investors use this method of investment for evaluating activities that take into consideration the environment and society with a view to selecting specific issues for investment or for using SRI funds.

As a result of its proactive efforts to promote its business and stabilize its financial position, Toyota Industries earned bond ratings of AA from S&P and AA+ from R&I in fiscal year 2007.

In order to fulfill its responsibilities to its shareholders, Toyota Industries must not only work on disseminating information about itself, but also constantly endeavor to identify the sort of information shareholders want, as well as what they expect of the company. To ensure this occurs, we have established a contact point for shareholders and investors on our IR website where we can respond to shareholder and investor opinions and questions.
Responsibility to Our Business Partners

Toward Co-Existence and Co-Prosperity with Our Business Partners

Working to Realize Co-Existence and Co-Prosperity with Our Business Partners, Based on Fair Trade and Transactions

Toyota Industries conducts a wide range of business operations and procures components, materials, and equipment in a variety of areas from business partners all over the world.

We work toward the realization of co-existence and co-prosperity with our business partners from a long-term perspective. In addition to purchasing goods at lower costs and with better quality at the time they are needed based on fair trading practices, we cooperate with our business partners in responding to social demands, including environmental conservation.

Procurement Policy

Fair Competition Based on an Open Door Policy
We have an open and fair entry process that allows all potential suppliers, regardless of nationality, size, and experience, the same chance to offer us their products or services. We select our business partners based on economic reasons such as the quality, price, and volume of their products, as well as on their adherence to delivery times. In addition, we also consider comprehensively things like environmental awareness, company stability, and technological development ability.

Amicable Relationship of Mutual Benefit Based on Mutual Trust
At Toyota Industries Corporation we work hard to realize an amicable relation of mutual benefit with our suppliers based on mutual trust.

We also believe that it is important to promote friendly communication with our suppliers by means of our procurement activities.

Environmentally-Friendly Products Based on "Green Procurement"
In order to create environmentally-friendly products we aim to procure parts, materials, and equipment that have low environmental impact from suppliers that always give sufficient consideration to the environment.

Localization of Business Based on Good Corporate Citizenship
As a company that undertakes local production overseas, we promote procurement from local suppliers in order to contribute to the local community.

Compliance with the Law
It is Toyota Industries’ policy to strictly abide by both the letter and spirit of laws and regulations and to also carefully handle and protect our partner’s secret corporate information.

Conducting Procurement Policy Explanatory Meetings
Toyota Industries strives for communication with business partners in various forms in order to enhance mutual trust. The company holds procurement policy explanatory meetings for major business partners in order to explain annual procurement policies and to gain their understanding and cooperation with our efforts.

Furthermore, we hold individual explanatory meetings for important matters, such as our response to social responsibilities and other issues, in order to share information about our respective needs and reinforce our relationships with our business partners.

In March 2005, we held an Environmental Response Explanatory Meeting for most of our business partners, seeking their cooperation in the reduction of substances of concern. In fiscal year 2007, we worked on the training and strengthening of personnel with TPS skills by encouraging our key business partners to take part in the TPS (Toyota Production System) Dojo and received 9 personnel from 8 suppliers.

TPS Dojo: A training program established in January 2000 for workers to experience for themselves a basic education in the Toyota Production System, in order to develop “thoughts and actions” and acquire kaizen (continuous improvement) skills.

Offering Marketing Opportunities through Open Procurement
Toyota Industries continuously offers open procurement opportunities on our website to achieve broad and open procurement. Together with offering a marketing opportunity for business partners all over the world, we facilitate fairness and equity by ensuring that business partners understand this process through public notification of our standard procurement procedures, from marketing to the conclusion of contracts. To apply, potential business partners must register the status of their environmental certifications, such as ISO 14001, as well as some other basic items such as the scale of their business and financial results.

Establishing a Consultation Center for Business Partners
Toyota Industries has established a consultation center to enhance communication with its business partners in fiscal year 2006. We mainly handle complaints and consultations from business partners regarding subcontracting laws, and make use of this information to maintain mutual trust and improve our procurement activities.

Personnel in a neutral position who are not responsible for the business transactions manage the consultation center within the Purchasing Department.

In fiscal year 2007, the Consultation Center received several requests from Toyota Industries affiliates for consultation about interpretation of subcontracting laws, but there were no consultations regarding problems in transactions with Toyota Industries.

Thorough Checking for Uninspected Items to Prevent Payment Delays
Of our approximately 1,500 business partners in Japan and overseas, about 800 companies (as of the end of March, 2007) are subject to laws concerning subcontracting, which account for more than half the total number. Our focus is, therefore, on compliance with the Japanese law (the Act Against Delay in Payment of Subcontract Proceeds, etc. to Subcontractors), while also working to ensure that trade is conducted on an entirely fair basis.

Whenever an item is delivered by a supplier, it must undergo an acceptance inspection to check whether or not it satisfies the
required specifications. If the item passes this inspection it is then accepted, and it is only after this process has been completed that payment can be made. Consequently, if we are to prevent delays in payment, it is vital that we make sure that no items slip through the cracks and miss out on acceptance inspections, so the departments responsible undertake thorough checks for any uninspected items at the end of each month. If an uninspected item is discovered the following month, not only must payment be made by the correct date, but the department responsible is instructed to submit a countermeasures report to prevent it from happening again. The Purchasing Department, which is the department responsible for ensuring compliance with subcontracting laws, held in-house training seminars on these laws on 22 occasions in fiscal year 2007, training a total of 700 employees involved in procurement in their respective divisions. This Department also publishes a monthly newsletter entitled “News Concerning Subcontracting Laws” on our Intranet and keeps employees up-to-date as to legislative amendments and important notices.

Supporting Business Partner Reforms
Toyota Industries supports business partners’ efforts to improve their financial standing in order to consistently procure better products. For Hoeikai, which is comprised of 67 business partners working with Toyota Industries, we proactively support quality and cost improvements, safety and health management, and environmental conservation.

We held quality training programs for our business partners on 34 occasions in fiscal year 2007, reaching 466 people. We also provided guidance and cooperation with the improvement of manufacturing processes at production sites on 38 occasions and held a Safety, Health and Environment Convention. We plan to continue these programs, and will provide an annual schedule.

Promoting Environmentally Friendly Procurement
In order to meet the regulations regarding the use of substances of concern we require the suspension of use, reduction of use, and the management of usage of these substances if they are included in our products or manufacturing processes based on our Environmentally Preferable Purchasing Guidelines.

Our procurement system requires our business partners to submit a banned substances declaration and environmental data including a report on the substances contained in components and other facts. Before purchasing products that will become part of Toyota Industries’ products, the information in these reports is confirmed by our various Quality Assurance Departments. For products that will be used in our production processes, confirmation is carried out by the Safety, Health, and Environment Department of Toyota Industries before purchasing.

In addition, we visit our business partners’ production plants as necessary in order to carry out process inspections. Furthermore, analysis equipment was introduced in fiscal year 2005 in an effort to strengthen management of substances of concern. Random inspections of supplied products are also carried out.

Establishing an Environmental Management System
Toyota Industries recognizes that it is essential to acquire an environmental management system certified by external authorities, such as ISO 14001.

We require business partners who are having difficulties in acquiring certification from external authorities in the interim to implement the Toyota Industries Environmental Management System, which is regulated by Toyota Industries. We fully support our business partners in their efforts to implement this system.

Case Study Meeting to Explain the Revised Environmentally Preferable Purchasing Guidelines

Toyota Industries held a meeting for suppliers to explain our “Environmentally Preferable Purchasing Guidelines (4th Edition)” at Nagoya City Hall on October 13, 2006. This was done in response to the rising need for greater corporate social responsibility, and the expansion in the types of businesses which need to consider this issue. We requested our suppliers to promote environmental conservation activities from the standpoint of thorough compliance with the laws, the prevention of global warming, and the management of environmental risk, etc.

Toyota Industries Substances of Concern Management System

Company-Wide Regulation
Products: Research and Development Center
Division: Safety, Health and Environment Department

Technology
Specified Requirements
Procurement
Purchasing Department
Purchasing Department at Each Division

Confirmation
Products: Quality Assurance Department at Each Division

Business Partners

A Banned Substances Declaration
Substances of Concern Data
Responsibility to Our Local Communities

Achieving Co-Existence with Local Communities

Committed to a Wide Range of Corporate Citizenship Activities that Benefit Local Communities

Based on the Guiding Principles for Corporate Citizenship, Toyota Industries is committed to a wide range of social contribution activities that benefit local communities, mainly in the areas of social welfare, education of young people, and environmental conservation. These activities include the provision of human resources to welfare facilities and traffic safety activities, donations to welfare events, community programs for the education of young people, community events, sports events, environmental conservation activities, and provision of company facilities for use in various community activities.

Toyota Industries also continues to support the Toyota Commemorative Museum of Industry and Technology, Sculpture d’Esaka (art museum), and KARIYA TOYOTA General Hospital and is also involved in the management of these establishments.

The total amount of Toyota Industries’ corporate citizenship activities in fiscal year 2007 was 622 million yen.

Social Contribution Activity System

Toyota Industries and its affiliates at home and abroad are promoting social contribution activities at each location in accordance with local circumstances. For example, Heartful Group, a volunteer unit established in Toyota Industries’ General Administration Department, drafts annual plans that aim to enhance voluntary activity planning, communication with local communities, and in-house education and enlightenment activities, among other initiatives.

In addition, Toyota Industries has been holding the Inter-affiliates Meeting on Corporate Citizenship twice a year since fiscal year 2005. This event provides us with an opportunity to examine and offer support for the action plans of our domestic affiliates while inviting their participation and collaboration in activities sponsored by Toyota Industries.

In order to promote social contribution activities throughout the Toyota Industries Group, including at our overseas affiliates, Toyota Industries established the Regional Society Contribution Subcommittee under the Corporate Code of Conduct Committee, the committee directly controlled by the President, in fiscal year 2006.

Toyota Industries Heartful Club – A Volunteer Organization Composed of the Toyota Industries Group’s Current and Retired Employees and Their Families

The Toyota Industries Heartful Club is a volunteer organization established by the company in 1997. Its members are current and retired employees (and their families) of Toyota Industries and its affiliates. The aim of the club is to spread the cause of volunteerism and to contribute to the building of a more prosperous society. The Club plans and organizes a variety of volunteer activities, such as taking residents of local welfare facilities out on clam digging expeditions, and a Social Welfare Festival at Toyota Industries’ employee leisure and entertainment facility.

The Heartful Group in the General Administration Office, which is within the General Administration Department of Toyota Industries’ Corporate Center, acts as the secretariat for the Heartful Club, assisting it with the administrative procedures necessary for the organization of these events. The company also subsidizes the costs of the activities. Details of the Heartful Club’s activities can be found on the Toyota Industries website (http://www.toyota-industries.com/csr/social/).

The Regional Society Contribution Subcommittee Starts Working towards the Promotion of Global Activities

Toyota Industries’ Regional Society Contribution Subcommittee is studying medium-term actions that the entire Toyota Industries Group can take to promote corporate citizenship on a global scale and is also considering key activities that will improve our corporate value. In fiscal year 2007, the Subcommittee began a survey of the status of corporate citizenship activities at our affiliates throughout Japan and around the world and also conducted interviews with employees who had worked overseas to develop a Group Social Contribution Action Plan. It has also worked on exchange and
collaboration with non-governmental organizations (NGOs) and non-profit organizations (NPOs), as well as local community groups in Japan and overseas to expand the circle of its activities.

So far, Toyota Industries and the eight affiliates involved in the annual Inter-affiliates Meeting on Corporate Citizenship have collected ruined postcards and donated them to the Kariya City Welfare Council to assist in UNESCO’s World Terakoya Movement. They also collect spent prepaid cards, unused stamps, and foreign currency notes to support Hunger-Free World.

In addition to these activities, a new activity adopted by Toyota Industries in fiscal year 2006 was its participation in the Present from the Forest Program run by the international environmental NGO, FoE Japan, with the aim of protecting the world’s forests. Volunteers from Toyota Industries’ workforce have assembled wooden benches made of forest thinnings from the Yahagi River basin and donated them to 10 childcare centers in Kariya City and 8 nursery schools in Obu City. In December 2006, we also started to support the making and spread of Friendly Pallet, wooden cargo pallets made from these same forest thinnings.

Participation in the Management of KARIYA TOYOTA General Hospital

Toyota Industries and six other Toyota Group companies located in Kariya City established the TOYOTA-KAI Medical Corporation. KARIYA TOYOTA General Hospital, which is operated by TOYOTA-KAI Medical Corporation, opened in 1963. Since then, the hospital has played a leading public role in providing emergency medical and other services, and has worked to become a central hospital for the area that is trusted by and well-loved by the local community. In a national ranking of hospitals (overall evaluation, published in March 2004) by Japan’s foremost business daily newspaper, Nihon Keizai Shimbun, Kariya General Hospital was ranked 8th nationally.

Toyota Industries provides 69 million yen in donations to the hospital every year and also seconds two employees to work in the hospital.

In-House Employee Education and Enlightenment Activities

To increase employee awareness of social contribution activities and to encourage their positive participation in volunteer programs, Toyota Industries provides employees with education aimed at increasing their understanding of a company’s social responsibilities and the meaning of activities for social responsibility.

Information about volunteer activities and recruitment is provided to all employees through Toyota Industries’ intranet.

Social Welfare Activities

Social and Environmental Report 2007
Community Activities

Traffic Safety Activities Aiming to Achieve the Goal of Zero Traffic Accidents
As an automotive-related manufacturer, Toyota Industries is working to set a positive example and achieve the goal of zero traffic accidents by pouring efforts into providing its employees with traffic safety-related educational programs and cooperating with local traffic safety activities.

Toyota Industries’ Central Traffic Safety Committee, comprised of both labor union and management representatives, outlines a safety action policy each fiscal year while working to familiarize every workplace with their plant’s traffic safety committee. Monthly meetings, attended primarily by members of traffic safety promotion committees, are held at each workplace in order to check activity progress and advance countermeasures. Activities in fiscal year 2007 were based on two policies: elimination of traffic accidents and promotion of the Yellow Stop Campaign. Workshops were held to re-familiarize participants with the things to be aware of while driving or commuting, and also the necessity of wearing seatbelts in all seats. Inspections and other measures are also implemented to ensure that the above cautions are being properly carried out at each workplace.

In addition to the Yellow Stop Campaign, which is carried out in cooperation with the Toyota Group and local governments, we conducted a traffic safety campaign with all 14,000 employees from November 2006 to March 2007. During the morning commute time, participants stood in areas around the factories and raised awareness of traffic safety by making appeals such as, “Yellow Stop” and “Use seatbelts” to employees and also ordinary passersby.

Providing Facilities for Community Activities
Toyota Industries volunteers the use of its athletic grounds, gymnasium facilities, tennis courts, judo halls, and training rooms for various sports activities, school club activities, and other community activities. We also offer our corporate buses for social welfare programs and lend trucks for environmental conservation activities to support these community activities.

Educational and Cultural Activities

Supporting Invention Clubs for Boys and Girls* to Help Youth Education
To help foster the healthy education of our youth, Toyota Industries utilizes a variety of means to support invention clubs for boys and girls in Kariya, Obu, Takahama, Handa, Anjo, and Hekinan, where our plants are located. For example, we provide donations to the Obu Invention Club for Boys and Girls to assist with administrative expenses, as well as providing financial assistance, volunteer helpers (Toyota Industries employees), and the loan of buses for the various events organized by the Club. The Kariya Invention Club for Boys is operated by the Toyota Institute of Physics and Chemistry, which is supported by Toyota Industries and ten other companies in the Toyota Group.

* Invention Clubs for Boys and Girls: A program launched by the Japan Institute of Invention and Innovation in 1974. Clubs have been formed in various parts of Japan with the cooperation of local governments, boards of education, schools, and companies.

Contributing to the Development and Promotion of Amateur Sports
Toyota Industries continues to contribute to the development and promotion of sports activities through donations to and sponsorship of sports promotion organizations and sports meets that are mainly in the local area. The Kariya Club, a local rugby club team consisting primarily of former members of the Toyota Industries Rugby Team, runs a rugby school for local children at the Toyota Industries Rugby Ground every year.

Participation in Program for School Teacher Training at Private-Sector Companies
In fiscal year 2006, Toyota Industries began participating in a program run by the Keizai Koho Center (Japan Institute for Social and Economic Affairs) for school teachers to receive training at private-sector companies.

In this program, teachers from elementary, junior high, and senior high schools are invited to attend training during the school summer holidays to increase their awareness of industry and corporate activities by experiencing them for themselves. 88 companies around Japan participate in the program. From August 23 to 25, Toyota Industries welcomed four teachers from the Takacho Board of Education in Hyogo Prefecture and helped them to increase their understanding of issues such as health and safety education, environmental conservation activities, and personnel and human resources development systems.
Participating in the Management of the Toyota Commemorative Museum of Industry and Technology

The Toyota Commemorative Museum of Industry and Technology was jointly founded by 13 companies of the Toyota Group.

The museum utilizes the building of the former Toyoda Automatic Weaving Co., which has been designated as an important building of the cityscape by Nagoya City.

Its purpose is to increase the understanding of young people about the “spirit of being studious and creative”, and the importance and wonder of “making things”. Since January 2007, the museum has put a steam engine, which was the driving force of the industrial modernization, on permanent exhibition.

Toyota Industries provides the museum with personnel, funds for covering management costs and exhibits, and also participates in its management.

Environmental Conservation Activities

Community Cleanup Events

Every year in September, Toyota Industries conducts a company-wide environment beautification campaign to clean the areas surrounding its plants. Group companies are also encouraged to participate, and in fiscal year 2007, about 4,200 employees, including those from sixteen affiliates, volunteered.

The company’s Managers’ Councils also conduct environmental beautification activities, while the Toyota Industries Council of Retired Employees (an organization comprising retired Toyota Industries employees) takes part in cleanup events in the areas around public facilities, such as parks and train stations.

* Managers’ Councils: Groups of employees arranged by work position and funded by membership fees with the aim of self-development and exchange. They include groups such as the “General Managers Council” and “Team Leaders Council”. Membership is voluntary for employees and their families.

Participation in the Adopt-an-Area Program

The Adopt-an-Area Program is a new type of town beautification program implemented by citizens, businesses, and the local government. Under this program, citizens and businesses “adopt” a certain public area and clean and beautify that area as its “foster parents”. The local government supports the program by, among other means, providing cleaning equipment and taking away the rubbish collected. At each area selected for “adoption”, a signboard showing the name of the “foster parents” is displayed, helping to inform citizens about the program.

Toyota Industries has four “adopted areas” in Handa and Obu, where Managers’ Councils and other groups of employee volunteers carry out cleanup and beautification activities during their lunch hours and at other times. This activity was extended to the Kariya area from June 2006.

Aid to Disaster-Stricken Areas

Disaster Volunteer Net

Thirteen companies in the Toyota Group have formed the Toyota Group Disaster V (Volunteer) Net to help the victims of natural disasters and disaster-stricken areas get back on their feet and restore and rebuild their communities themselves. Toyota Industries currently has 96 employees registered with the Disaster V Net.

The Disaster V Net has set up an information network to enable appropriate action to be taken to assist restoration and rebuilding efforts, and it also conducts regular seminars. At times of disaster, the organization liaises with the regional volunteer headquarters set up by local governments and assists them by advertising for volunteers and in other ways.
Responsibility to Our Employees

Ensuring a Workplace Where Each Employee Can Work Safely with Enthusiasm

Improving Occupational Health and Safety

Toyota Industries is continually implementing activities for the prevention of industrial accidents and the creation of a pleasant work environment, underpinned by its fundamental policy of “Establishing a Occupational Health and Safety System to build strong workplaces which are able to recognize, think, and act on their own”. We are also promoting activities to achieve “Improvement from zero accidents to zero danger”.

In fiscal year 2007, activities in this area were carried out under the auspices of three major policies – the maintenance and improvement of the occupational health and safety management system to enhance workplace strength, the pursuit of equipment safety, and the creation of a pleasant work environment.

The focus of the Occupational Health and Safety Management System to date has been on operational areas of the company, such as manufacturing and inspection processes, but we conducted a study to extend it to all areas of the company, starting with our administrative departments. After completing trials and providing guidance to the designated departments, we will extend this system to be used company-wide starting from fiscal year 2008.

An analysis of the cause of industrial accidents showed that many of those accidents were caused because workers did not observe the ground rules, even when they knew what those rules were. In fiscal year 2006, we rolled out a work ethic-raising campaign and promoted it with great energy. Each Division inserted this campaign in its guiding principles and developed activities, such as a morning greeting, not using mobile phones while walking, and not walking with your hands in your pockets. This campaign was simple, but proceeded to steadily and diligently.

In June 2006, the All-Toyota Safety and Health Association, which is composed of 14 Toyota Group companies, decided on the major subjects for the group to promote. As a result, the “full implementation of the lock-down system”, was introduced for high-risk equipment in all factories in fiscal year 2007 and we are extending it to all designated equipment in fiscal year 2008. In this way we intend to thoroughly prevent industrial accidents caused by the erroneous operation of machinery by others. In addition, we plan to carry out “enhanced management of external work”. In fiscal year 2007 there were accidents at construction sites outside the company. Therefore, we established a new framework for the departments in charge of construction, carried out additional training for on-site supervisors and workers, and also had top-level management involved in in-house inspections. Thanks to these efforts we have improved the level of Safety and Health management at our construction sites.

• Lock-down System: This is a system where locks will be used to ensure that the shutdown state of machinery will be maintained once the power to that machine has been cut off. This will allow workers to protect themselves against being injured by the mistaken operation of the machinery by others.

Supporting the Improvement of Health and Safety Activities at Affiliates

In conjunction with the relevant departments in our company, Toyota Industries provides study sessions and on-site checks and guidance for our affiliates in Japan, with a focus on compliance. However, in the second half of fiscal year 2007, industrial accidents occurred. In analyzing these accidents, it became clear that the same kinds of accidents reoccurred at the same company or that another accident that was very similar to one of the most recent industrial accidents occurred at another company. Therefore, we promoted activities to prevent accidents by deploying information and safety features to our affiliates and checking the status regularly. We also host repeated workshops for top management or other persons in charge to improve the level of their Occupational Health and Safety Management Activities.

Focus on Health Management

Toyota Industries conducts a number of activities to support and maintain the health of our employees as we strive to build people and workplaces that can respond to risks such as aging and increased stress.

Table 1 Health Creation Programs Conducted in FY 2007

<table>
<thead>
<tr>
<th>Program</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle disease prevention</td>
<td>★Additional confirmation items during the health checkup to prevent metabolic syndrome ★Initiatives to improve the consultation rate for detailed examinations (large intestine and stomach) • Non-smoking marathon (126 participants, 64 successful) • Walk/Hike (151 participants) • Age-based health education (held 12 times, 226 participants)</td>
</tr>
<tr>
<td>Occupational disease prevention</td>
<td>★Support for employees with long work hours on overseas assignment • Development of frameworks for advance management of appropriate assignments through liaison between the health management and personnel systems' information system, (limits on overseas travel, nighttime, or overtime work) • Back pain prevention clinic (71 participants, 85% improvement)</td>
</tr>
</tbody>
</table>

New initiatives
Toyota Industries also includes the issue of mental health in its multilayered education and strives for the prevention of mental health problems and the early detection and management of problems when they do arise. We give employees the opportunity to seek health advice from health nurses.

<table>
<thead>
<tr>
<th>Table 2 Mental Health Programs Conducted in FY 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
</tr>
<tr>
<td>Self-care education and enlightenment</td>
</tr>
<tr>
<td>Reinforcement of health checks for manager class employees</td>
</tr>
<tr>
<td>Preparatory work system</td>
</tr>
<tr>
<td>Health consultations</td>
</tr>
</tbody>
</table>

Management of Working Hours and Encouragement to Take Paid Annual Holidays
Toyota Industries endeavours to manage working hours to prevent employees from working excessively. At each workplace, supervisors monitor the work of their subordinates and, where necessary, give advice and guidance on sharing work loads. Each workplace also reserves one day for everyone to leave work at the prescribed time, thus cutting down on overtime. Toyota Industries also encourages employees to take their paid annual holidays. In fiscal year 2007, however, increased production led to employees becoming busier, which affected the taking of annual leave. The average number of days off taken in fiscal year 2007 fell by 1.0 days from the previous year to 17.0 days.

Support for Employees on Overseas Assignment
As our business becomes increasingly globalized, the number of employees posted on overseas assignments is also increasing. Toyota Industries provides for medical examinations before, during, and after the overseas assignment for these employees and their families. Our industrial physicians also visit overseas workplaces on a regular basis to provide health consultations to our employees working overseas. In fiscal year 2007, Toyota Industries’ industrial physicians visited seven workplaces in five countries.

Creating Comfortable Workplaces Based on Respect for Human Rights
Toyota Industries and its affiliates at home and abroad are working to achieve both corporate development and the well-being of each and every member through the mutual fulfillment of responsibilities by both employees and management.

Employee-Management Relations Based on Mutual Trust
One of Toyota Industries’ basic principles is to “nurture the inventiveness and other abilities of its employees while seeking to create a climate of cooperation, so that employees and the company can realize their full potential.” Based on this principle, Toyota Industries is working to maintain and improve working conditions that ensure secure employment and long term stability, in addition to creating workplaces that are healthy and easy to work in. This is fundamentally based on a respect for human rights, as established in our conduct guidelines: “Respect the personality of individuals, prevent sexual harassment and abuse in the workplace, and refrain from discrimination based on race, religion, gender, nationality, disability, or any other factor not related to an individual’s work performance.” In addition, as our business becomes increasingly global, the Toyota Industries Group will reject the use of child and forced labor, as well as comply with the laws and social norms in each country where we operate.

Every year, human rights issues are included in the education program for our new employees.

Security and Diversity of Employment
Toyota Industries places a high value on maintaining and ensuring stable employment. The number of people employed by Toyota Industries has been steadily increasing from year to year as our business has expanded. Moreover, as our business operations have become increasingly globalized, our workforce has become increasingly diverse. It is our belief that the provision of a fair and just working environment is of the utmost importance, where diversity of individuals is respected regardless of gender, age, nationality, or disability or otherwise.

As of the end of March 2007, the consolidated workforce of Toyota Industries numbered 36,096 employees, approximately half of whom are employed at overseas affiliates. The number of part-time workers, including temporary contract workers, climbed to 8,883 (8,007 in the previous fiscal year).

We recruit new graduates every year based on the requirements of each business division. In April 2007, 523 new graduates commenced work at Toyota Industries. We plan to recruit 525 new graduates in fiscal year 2009.
Employment of People with Disabilities

Toyota Industries employs people with disabilities every year on a continual basis and assigns them to various workplaces. It is our view that disabled people and others should work together and share job satisfaction and the purpose of life.

Toyota Industries is endeavoring to improve the work environment by organizing a Settlement Promotion Team within the company and by holding informal discussions with disabled persons to hear their opinions on a regular basis. These steps are intended to ensure a workplace where disabled people can work at ease.

As of the end of March 2007, Toyota Industries had 155 people with disabilities employed in its workforce (142 in fiscal year 2006), meaning that they made up 1.80% of the total workforce (the legal requirement in Japan is 1.8%).

Re-Hiring after Retirement

Toyota Industries has conducted a post-retirement re-hiring program called the Super Career Program since April 2003. The aims of the program are to address the issues of the falling birthrate and aging population in Japan and to pass on the skills and expertise of our more experienced workers to younger employees. Retiring employees who wish to be re-hired and who satisfy certain requirements in terms of work skills are selected through this program to work for a maximum of three years. In April 2006, in response to the revision of the Law Concerning the Stabilization of Employment of Older Persons, the Super Career Program was expanded to form the basis of a new program, the Post-Retirement Re-Hiring Program. Whereas the Super Career Program was available only to union members, the new program has been extended to all employees, including manager-class employees. Also, in line with the intent behind the revised law, we have made the program into a continuous employment program based on selection criteria agreed upon with the union. In addition to this program, retired employees can also register with our subsidiary, Sun Staff, Inc. to obtain work as temporary dispatch workers.

Ensuring Equal Opportunities

In order to promote equal opportunities in the workplace, Toyota Industries is striving to create a transparent and fair human resources system, as well as a workplace where employees can exercise their capabilities to the full, regardless of gender.

The Equal Opportunity Manual has clear guidelines that explain the purpose and content that must be complied with of the law for our employees. In addition, the company provides consultation services concerning equal employment opportunities for both sexes, to ensure prompt responses to issues.

Supporting the Balance between Family and Work

Toyota Industries is actively working to enhance programs that enable employees to balance their family and workplace commitments, as well as to encourage a workplace culture that understands the need for a variety of work options that address individual family circumstances.

As part of the Family-Work Balance Programs, Toyota Industries launched the Child Care Leave Program in 1991. From fiscal year 1992 through the end of fiscal year 2007, a total 428 employees (43 in fiscal year 2007), made up mostly of women, have taken advantage of Toyota Industries’ child care leave programs. We will continue to encourage this practice in the future.

In March 20, 2007, Toyota Industries introduced the “Welcome back program”, which offers an opportunity for reemployment to employees who retired in order to raise children, care for the elderly, or due to the transfer of their spouse. This program applies to employees who completed a service period of at least three years, and does not depend on their previous job, qualifications, or gender. Basically, an applicant submits an application at the time of retirement and then in principle comes back to work for the same department when they are able.

Based on the Child Allowance System, we have revised an action plan covering fiscal year 2008 to 2009. According this plan, we are going to carry out various measures, including establishment of a day care center operated by five Toyota Group companies, starting in October 2007.

Nurturing a Sense of Unity and Teamwork through Human Resource Development

In order for each employee to be enthusiastic about their work, and for the company to continue developing, increasing workplace strengths (organizational ability) is essential.

Toyota Industries interprets “workplace strengths” as being the power to identify the company’s mission and role, to pursue improvements without giving up until the final goal is achieved, and the drive with which employees develop and results are achieved on a continuous basis. In order to increase workplace strengths, specialized techniques (such as expertise, skills, and know-how) need to be raised, as these techniques provide the starting point in manufacturing. In addition, management techniques such as TPS (Toyota Production System), QC (Quality Control), and SQC (Statistical Quality Control) need to be employed to take full
advantage of these techniques by uncovering problem areas and resolving them. When a spirit of harmony, such as motivation, teamwork and well-rounded humanity is secured as a foundation, and specialized techniques and management techniques are added to it, only then will workplace strengths be increased. Furthermore, when the workplace leader exercises leadership at the center of these three rings, workplace strengths can be improved and increased on a continuous basis.

Nurturing a Sense of Unity and Teamwork to Strengthen the “Spirit of Harmony”

We believe that well-rounded humanity and a sense of unity and teamwork in the workplace, which are needed to create a strong workplace, evolve naturally from human relationships and communication. Based on this belief, Toyota Industries actively promotes the Personal Touch (PT) movement. Through the ST (steward) program (provided by senior employees in the workplace), the fostering program* (provided by supervisors in the workplace) and a variety of recreational activities, we encourage close communication between our employees.

For example, in the ST program, senior employees in a workplace become “STs” or a steward for that workplace, providing new employees with one-on-one guidance over a period of six months. We believe that stewards help new recruits to become accustomed to their work and their workplace more quickly by giving them what we believe to be careful and appropriate advice.

* Fostering (Workplace Supervisor) Program: In this program, workplace supervisors invite new employees and other subordinates to their home for informal discussions over a meal to deepen close relations among employees. The aim of this program is to help new employees settle into the workplace quickly and attempt to prevent problems from occurring.

Human Resources Development Management

Toyota Industries employs the Challenge Sheet Interview system for its human resource development management, where guidance and nurturing are provided on an individual basis through communication between the employees and their superiors.

As for managers, the company strives to promote human resource development by setting tasks and targets in terms of development and guidance of the employees, and by assessment that focuses on personnel development.

Education and Training Programs

Toyota Industries provides multi-layered and specialized area education and training to employees in technical positions and those in office and engineering positions, as well as a range of other programs.

In addition, voluntary education and training programs provided by Toyota Industries for its employees include the Global Human Resources Registration and Development Program, the Global Challenge Registration Program, which helps employees wanting to be active in a global arena to improve themselves, the License Power Qualification Attainment Support Program, which assists employees in obtaining various official certifications (42 employees certificated in fiscal year 2007), and the Trade Certificate Attainment Support Program, to help employees obtain both government and company trade certificates (309 employees certificated in fiscal year 2007).

For new employees, “training of manufacturing” encourages them to acquire very basics of manufacturing. They touch the real Type G automatic loom, the origin of Toyota Industries and learning the ingenuity behind its mechanism. They also complete drawings with drafting table, using their own head and hands.

Development of TPS (Toyota Production System) Human Resources

Since the establishment of Toyota Industries by Sakichi Toyoda and subsequent management by Kiichiro Toyoda, manufacturing processes have incorporated the concepts of *Jidoka*¹, and *Just-in-time*². These concepts are fundamental to the Toyota Production System (TPS), which the company employs to ensure efficient production through continuous improvement. The development of human resources that will lead the company into the next generation is promoted by adhering to these concepts. There is also the TPS *Dojo*, where fundamental education and practical experience are provided to strengthen human resource development.

¹ *Jidoka*: The concept of preventing defective products from being produced. If a defective part or equipment malfunction is discovered, the machine concerned automatically stops and operators stop work and correct the problem.

² *Just-in-Time*: The concept of making and supplying only “what is needed, when it is needed, and in the amount needed”

Development of Young Technicians

“Manufacturing starts with developing our human resources.” Based on this idea, Toyota Industries has long been addressing the development of young technicians who have both highly advanced and practical skills. The company established the “Gino Senshu Gakuen (Technical Training School)” in 1982 where training is provided in three areas, namely the academic training to acquire knowledge, practical training to acquire skills, and mental training for character building. 95 employees completed the course in fiscal year 2007.
The Toyota Industries Group’s Responsibility to the Environment
Business Activities and Their Environmental Impact

As a manufacturer of a wide variety of products, including lift trucks, car air-conditioning compressors, textile machinery, motor vehicles, and electronic products for use in motor vehicles, the Toyota Industries Group is making an effort to understand the environmental impact of our products across their entire life cycle, from the stage of procurement of raw materials and parts through to product manufacture and on to product disposal.

The most notable environmental impacts generated by Toyota Industries’ operations include global warming caused by the use of energy and greenhouse gases in processes such as casting, emissions from casting, machining and other processes, the atmospheric impact of chemical substances used in the painting of motor vehicles, lift trucks and compressors, and the impact of industrial wastewater on public waterways. Toyota Industries is continually striving to reduce these kinds of environmental impacts of its operations.

Focus of Environmental Activities in Product Development

- **Business**
 - Textile Machinery Business: Create designs with improved energy efficiency.
 - Car Air-Conditioning Compressor Business: Reduce weight and improve efficiency. Reduce power consumption and utilize new, environmentally friendly refrigerants.
 - Vehicle Business: Reduce weight and improve recyclability.
 - Electronics Business: Contribute to the development of clean energy vehicles.

Common themes:
- Reduce the use of substances of concern
- Promote environmentally preferable purchasing

Energy Consumption

- **Consolidated**: 15,166 TJ
- **Japan**: 54%
- **Overseas**: 22%

Changes in Energy Consumption (non-consolidated)

<table>
<thead>
<tr>
<th>Year</th>
<th>Heat (TJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>4,557</td>
</tr>
<tr>
<td>2000</td>
<td>5,046</td>
</tr>
<tr>
<td>2004</td>
<td>6,090</td>
</tr>
<tr>
<td>2006</td>
<td>6,415</td>
</tr>
</tbody>
</table>

1 TJ (Terajoule): A unit used to measure heat. 1 TJ = 10¹² Joules

Plant Emissions and Environmental Impact of Each Process (as of March 2007)

- **Takahama**
 - Machining, cleaning: CO₂ (global warming), Waste products
 - Painting: VOC*, chemical substances (air pollution), CO₂ (global warming)

- **Kariya**
 - Machining, cleaning: CO₂ (global warming), Waste products
 - Painting: VOC, chemical substances (air pollution), CO₂ (global warming)
 - Die-casting: CO₂ (global warming)
 - Machining, cleaning: CO₂ (global warming)
 - Painting: VOC (air pollution), Use of CFC substitutes: HFC* (global warming)

- **Nagakusa**
 - Painting: VOC, chemical substances (air pollution), CO₂ (global warming)
 - Machining, cleaning: CO₂, HFC, global warming, CO₂ (global warming), Water pollution, waste products

- **Heikinan Higashichita Kyowa**
 - Machining: CO₂ (global warming)
 - Casting: CO₂ (global warming), SO₂* (air pollution), waste products

- **Kyowa**
 - Plating process: Water pollution

Greenhouse Gas Emissions

<table>
<thead>
<tr>
<th>Category</th>
<th>Non-consolidated</th>
<th>Consolidated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>283kt</td>
<td>698kt</td>
</tr>
<tr>
<td>Other greenhouse gases (HFC, SF₆, etc.)</td>
<td>313kg</td>
<td>759kg</td>
</tr>
<tr>
<td>Total</td>
<td>286kt</td>
<td>712kt</td>
</tr>
</tbody>
</table>

Air Pollutant Emissions

<table>
<thead>
<tr>
<th>Category</th>
<th>Non-consolidated</th>
<th>Consolidated</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>313kg</td>
<td>759kg</td>
</tr>
<tr>
<td>NOₓ</td>
<td>134,435kg</td>
<td>222,047kg</td>
</tr>
<tr>
<td>VOC</td>
<td>1,844t</td>
<td>2,531t</td>
</tr>
</tbody>
</table>

7 Nitrogen oxides
Social and Environmental Report 2007

Toyota Industries pursues product development that takes into account the 3Rs – Reduce, Reuse, and Recycle. This is achieved by reducing waste through methods such as making products longer-lasting, smaller and lighter, re-using components, and recycling used products by reprocessing them and using them as different materials.

Major Environmental Impacts during Recovery, Recycling and Disposal

- **CO2 emissions during recycling (global warming)**
 - Generation of waste

Focus of Environmental Activities

- **Reduction of waste**
 - Reduce landfill waste (Japan consolidated) to less than 1% of FY 1999 levels by the end of FY 2011.

- **Reduction in environmental risk**
 - Further reductions in emissions of substances of concern (group companies in Japan) by the end of FY 2011 to 5% of FY 2004 environmental impact levels.

- **CO2 emissions during recovery, recycling and disposal**
 - Toyota Industries pursues product development that takes into account the 3Rs – Reduce, Reuse, and Recycle. This is achieved by reducing waste through methods such as making products longer-lasting, smaller and lighter, re-using components, and recycling used products by reprocessing them and using them as different materials.

Materials Handling Equipment

- Global warming caused by vehicle operation
- Air pollution resulting from exhaust gas emissions

Textile Machinery

- Global warming caused by electric power consumption

Compressors

- Global warming caused by vehicle operation
- Global warming caused by CFC substitutes

Vehicles

- Global warming caused by vehicle operation
- Air pollution caused by exhaust gas emissions

Engines

- Global warming caused by vehicle operation
- Air pollution caused by exhaust gas emissions

Electronics

- Global warming caused by electric power consumption and vehicle operation
Global Environmental Commitment

The Toyota Industries Group will contribute to the compatibility of environmental conservation and economic growth throughout its wide range of business activities, including automobile, industrial equipment, electronics and logistics.

Basic Policy

- The Toyota Industries Group will continue to set challenging targets aimed at further reducing the environmental impact of its business activities, listening carefully to voices of its stakeholders such as customers, and acting in compliance with the letter and spirit of laws and regulations.

- The Toyota Industries Group will continuously improve its environmental management, placing environmental activities among its highest priorities. In particular, the company will give priority to the following items.

 - **Curb global warming**
 Aiming to reduce energy consumption and the output of greenhouse gases through the entire lifecycle of its products, services, and production activities.

 - **Use resources more efficiently**
 Utilizing raw materials, water, and other resources efficiently while working to reduce, reuse, and recycle waste products.

 - **Reduce environmental risk factors**
 Reducing the use and output of substances of concern while evaluating environmental risk factors at the planning stage of business activity in order to prevent pollution.

- The Toyota Industries Group will aim to foster greater communication and teamwork within a wide range of partnerships, including those with customers and suppliers, in order to promote sustainable management of the environment. In addition, the Toyota Industries Group will act as an upstanding corporate citizen, taking an active part in the planning of activities that contribute to various regional communities as well as to our global society.

July 2005

Tetsuro Toyoda
President

Scope of Group-Wide Environmental Management

<table>
<thead>
<tr>
<th>Region</th>
<th>Manufacturing Company</th>
<th>Sales Company</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>Manufacturing Company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Manufacturing Company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>Manufacturing Company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Sales Company</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Management

Promotion of Environmental Management Systems Based on Our Global Environmental Commitment

In January 2003, Toyota Industries declared an Environmental Commitment for the Toyota Industries Group, a document that indicates the Group’s basic policies on environmental issues. In July 2005, this Environmental Commitment was revised to become the Global Environmental Commitment (see previous page). This revision was designed to enhance the Toyota Industries Group’s environmental management in the three key areas of curbing global warming, using resources more efficiently, and reducing environmental risk factors. This Global Environmental Commitment is shared by all companies in the Toyota Industries Group and is reflected in the individual Environmental Action Plans of each company in their promotion of environmental management systems (EMS).

Status of the Environmental Management Systems

The Toyota Industries Group began the implementation of its environmental management system in fiscal year 1997 and has since been pursuing the acquisition of ISO14001 certifications. Toyota Industries has also established an Environmental Committee, chaired by the President of the company, which decides on environmental policies and plans and monitors the outcomes of environmental activities. The Product Technology Subcommittee and Production Environment Subcommittee, chaired by Executive Vice Presidents and operating under the Environmental Committee, work to strengthen the activities being pursued in each focus area. Each business division formulates its own systems for the promotion of environmental management based on the policies and plans of this company-wide organizational framework.

Educating Employees about the Environment

Education Framework Designed to Broaden the Knowledge Base and Increase Specialization

Toyota Industries has adopted a three-level approach to employee environmental education – general education at the plant level, rank-based training, and specialist training. Both of the later are conducted on a company-wide level. The aim of the general education component is thorough promotion of understanding about environmental issues, including awareness of each Division's environmental impacts, activity targets, and implementation plans. The rank-based component is designed to provide employees with the level of environmental knowledge required at each rank, with programs provided for new employees, newly-appointed senior staff, and newly-appointed managerial staff. Specialist programs are also conducted to train leaders in the promotion of environmental activities.

Awards for Kaizen Proposals with an Environmental Focus

During Environment Month in June, Toyota Industries invites its employees to submit environmental proposals. In fiscal year 2007, 1,141 applications were received, from which three proposals were chosen for special awards. One of these, a proposal for reducing industrial water usage through the recycling of treated wastewater, is featured on Page 48.

Environmental Audits

Continuous Improvement through Environmental Audits

In addition to the ISO14001 renewal audit that is undertaken once every three years, Toyota Industries also conducts annual internal audits, as well as having external audits conducted by a certification agency. The findings of these audits are thoroughly examined in order to carry out the ongoing improvement of our environmental management systems and environmental performance.

The assessment of the ISO14001 external audit stated that, “the company’s Environmental Management System met the requirements of the ISO14001 standards and efforts to improve the system are ongoing.”

Our future plans in the area of environmental auditing include the formation of an independent internal auditing body to further strengthen the internal auditing systems of the EMS. The aims of this initiative are to maintain fairness and to raise the standards of internal audits by having them conducted by auditors with official qualifications.
As one of Toyota Industries major approaches to the environment, we prepare and implement five-year plans called Environmental Action Plans.

In the Fourth Environmental Action Plan (FY 2007-2011), which began in the fiscal year 2007, the curbing of global warming, more efficient use of resources, reduction of environmental risk factors, and consolidated management are positioned as the key areas of environmental activities. The Action Plan sets out specific actions and targets for each of those areas.

A new feature introduced in the Fourth Environmental Action Plan in the area of target management is the introduction of the concept of “eco-efficiency” to quantify changes in environmental impacts.

In fiscal year 2007, the environmental management organizational framework was overhauled and a Production Environment Subcommittee was established under the Environmental Committee. Efforts were made to strengthen comprehensive environmental actions in the area of production and to reduce environmental risk factors. In product-related areas, meanwhile, the focus of environmental activities was on the development of products with higher environmental capabilities.

* Eco-efficiency: Calculated according to the following formula from environmental impact and product or production activities.

\[
\text{Eco-efficiency} = \frac{\text{Product Functions}}{\text{Environmental Impact}}
\]

\[
\text{Production Efficiency} = \frac{\text{Sales Revenue, Production Volume, etc.}}{\text{Environmental Impact of Production Activities}}
\]

\[
\text{Eco-efficiency} = \frac{\text{Production Efficiency in Subject Year}}{\text{Production Efficiency in Base Year}}
\]

Table 1: State of Progress of the Fourth Environmental Action Plan (Product-Related)

<table>
<thead>
<tr>
<th>Action Policies</th>
<th>Specific Actions</th>
<th>FY 2007 Achievements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbing Global Warming</td>
<td>- Develop technologies to reduce vehicle weight</td>
<td>- Achieved low fuel consumption in the new GENEO (8FG/D outside Japan) lift truck</td>
<td>41,42p</td>
</tr>
<tr>
<td></td>
<td>- Develop engines that meet fuel efficiency targets set during the product planning stages</td>
<td>- Developed a hybrid lift truck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Develop high-efficiency car air-conditioning compressors</td>
<td>- Expanded the range of electric compressors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Further improve the performance of equipment for hybrid vehicles</td>
<td>- Conducted life cycle assessments (LCA) on the major product lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Develop equipment for the next generation of fuel cell vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Steadily reduce life-cycle environmental impact through implementation of life cycle assessments (LCA) for all product lines</td>
<td>- Conducted a recyclability assessment on the major product lines</td>
<td>43p</td>
</tr>
<tr>
<td></td>
<td>- Develop products with high eco-efficiency</td>
<td>- Produced 3R Design Guidelines for the materials equipment handling and textile machinery businesses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Develop car air-conditioning compressors that use refrigerants with low global warming potential (GWP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Resources More Efficiently</td>
<td>- Steadily improve recyclability through the establishment of recyclability assessments for all product lines</td>
<td>- Conducted a recyclability assessment on the major product lines</td>
<td>44p</td>
</tr>
<tr>
<td></td>
<td>- Develop products that are easy to dismantle and recycle</td>
<td>- Produced 3R Design Guidelines for the materials equipment handling and textile machinery businesses</td>
<td></td>
</tr>
<tr>
<td>Reducing Environmental Risk Factors</td>
<td>- Eliminate use worldwide of the four substances of concern banned by Europe’s ELV directive (lead, mercury, cadmium, and hexavalent chromium) (some parts are exempted)</td>
<td>- Achieved complete elimination of the four banned substances of concern (in motor vehicles and automobile parts)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Increase the number of substances of concern that are subject to controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reduce emissions to improve air quality in urban areas in all countries and regions</td>
<td>Met 2007 Japanese emissions standards for our internal combustion lift truck, GENEO (8FG/D outside Japan)</td>
<td>44p</td>
</tr>
</tbody>
</table>
Table 2 State of Progress of the Fourth Environmental Action Plan (Production-Related)

<table>
<thead>
<tr>
<th>Action Policies</th>
<th>Specific Actions</th>
<th>Control Items (FY 2011 Targets)</th>
<th>FY 2007 Achievements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curbing Global Warming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>• Reduce CO₂ from energy use</td>
<td>• Non-consolidated Energy-derived carbon dioxide eco-efficiency (base year: FY 1991)</td>
<td>1.24 1.34</td>
<td>45,46p</td>
</tr>
<tr>
<td></td>
<td>• Streamline production processes</td>
<td>• Non-consolidated Basic unit (unit: t-CO₂/100 million yen)</td>
<td>29.3 25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Optimize supplied energy</td>
<td>• Consolidated Energy-derived carbon dioxide eco-efficiency (base year: FY 2004)</td>
<td>1.09 1.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Promote introduction of new energy solutions</td>
<td>• Consolidated Basic unit (unit: t-CO₂/100 million yen)</td>
<td>41.4 37.1</td>
<td></td>
</tr>
<tr>
<td>Raw Materials</td>
<td>• Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reduce the volume of discarded materials by taking action at the source, such as improving yields and other measures</td>
<td>• Non-consolidated External disposal eco-efficiency (base year: FY 2004)</td>
<td>1.07 1.08</td>
<td>47,48p</td>
</tr>
<tr>
<td></td>
<td>• Promote internal re-use</td>
<td>• Non-consolidated Groundwater use (unit: km³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>978 1,032</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>• Eliminate landfill disposal at all consolidated production companies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Establish measures to evaluate environmental impact of waste disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Production sites in Japan Landfill volume (unit: t)</td>
<td>309 353</td>
<td></td>
</tr>
<tr>
<td>Reducing Environmental Risk Factors</td>
<td>• Establish environmental risk assessment systems at the planning stages (incorporate measures to reduce environmental impacts in the business planning stages)</td>
<td>Prepare Eco-Factry Guidelines for new and modified facilities and equipment</td>
<td>Guidelines Issued</td>
<td>49,50p</td>
</tr>
<tr>
<td>Production</td>
<td>• Ensure appropriate management of chemical substances in accordance with social conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enhance risk communication with stakeholders such as local residents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reduce total environmental impacts of waste treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Non-consolidated Environmental impact (10% reduction from FY 2004 levels)</td>
<td>18% reduction 29% reduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Production sites in Japan Environmental impact (5% reduction from FY 2004 levels)</td>
<td>10% reduction 31% reduction</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 State of Progress of the Fourth Environmental Action Plan (Management)

<table>
<thead>
<tr>
<th>Action Policies</th>
<th>Specific Actions</th>
<th>FY 2007 Achievements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidated Management</td>
<td>• Suppliers</td>
<td></td>
<td>26p</td>
</tr>
<tr>
<td></td>
<td>• Further promote environmentally preferable purchasing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve environmental performance by supporting the establishment and promotion of environmental management systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enhance management of substances of concern</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Group companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Promote consolidated environmental management by enhancing mutual communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thorough environmental compliance (all companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Establish environmental management systems (sales and service companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Introduce environmentally preferable purchasing and environmental accounting (production companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve environmental performance and enhance external environmental communication (production companies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confirmed management systems for substances of concern at all suppliers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supported environmental management at group companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Strengthened management of substances of concern</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Promotion of Environmentally Friendly Design by Assessing Environmental Impact across the Entire Product Life Cycle

Life Cycle Assessment (LCA) of Major Products
A Life Cycle Assessment (LCA) is a method of evaluating the environmental impact of a product across its entire life cycle, from procurement of raw materials and parts, to production, throughout its usage stage, and finally on to its disposal.

Toyota Industries has been implementing trials of LCA on some of its products since the late 1990s. Based on those trials, it compiled the aims and methods of LCA into the LCA Guidelines in May 2004, and conducted LCA on its major products. This in turn resulted in the establishment of in-house regulations that stipulate the control items and targets regarding environmental impact at each stage of a product’s life cycle that must be considered during the development stage. In addition to product LCA, Toyota Industries has also established a system for calculating LCA recycling rates.

The results of the LCA conducted on the new model lift truck, GENEO (8FG/D outside Japan), in fiscal year 2007 are as shown in Graph 1.

Data and Principles Forming the Basis of LCA Calculations

- **Calculate the quantity of resources consumed and/or invested to ascertain the environmental impact**
 - **Energy** (electric power, gasoline, kerosene, etc.) / **Resources** (crude oil, natural gas, iron ore, bauxite, etc.) / **Materials** (cast iron, steel plate, aluminium alloys, polypropylene, etc.) / energy consumed to use product, etc.

- **Calculate emissions to ascertain environmental impact**
 - **Greenhouse gases** (CO₂) / **Atmospheric pollutants** (NOₓ, SO₂, NMHC non-methane hydrocarbons) / **PM** (particulate matter such as graphite found in gas emissions) / **Water and soil contaminants** (nitrates, phosphates) / **Waste material**

Note: Water contamination indicators include COD (chemical oxygen demand) and BOD (biological oxygen demand).

Applying Results of Assessment

- **LCA**
 - Ascertain Impact on the Environment

- **Use to Consider Planning Targets in New Product Development**

- **Promote Environmentally Friendly Design**

Toyota Industries will continue to conduct LCA on its major products to obtain information about their impact on the environment. This will enable the company to set targets for new products and to promote environmentally friendly design.
TOPICS

Introduction of In-House Certification Program for Environmentally Friendly Products

In December 2006, Toyota Industries launched its own certification program for environmentally friendly products. The first product to obtain this certification was the new internal combustion lift truck, “GENEO” (8FG/D outside Japan), which was released in September 2006.

The aims of the certification program are the pursuit of environmental considerations during product development and the promotion of Toyota Industries’ environmentally friendly products. It is based on the International Standards Organization (ISO) Type II environmental labelling standard (ISO14021)*1. Environmentally friendly products are certified if they meet Toyota Industries’ own standards for consideration of the three main themes of the Fourth Environmental Action Plan during their product development. The Fourth Environmental Action Plan started in fiscal year 2007 and the three main themes are curbing global warming, using resources more efficiently, and reducing environmental risk factors (substance of concern risk management).

Assessment under the certification program is conducted according to a two-pronged approach. The first is a “Factor Assessment”, which assesses quantitatively how much the newly developed product’s eco-efficiency has improved compared to that of the base product (existing Toyota Industries product). The second is a “Development Processes Assessment”, which includes assessment of factors such as fuel efficiency improvements, smaller size, lighter weight, and the like. Products that satisfy the criteria are then checked by an independent verifying agency and adjudicated within the company before being granted certification. Products that are certified carry a Toyota Industries environmental label.

Under the Type II environmental labelling standard, ISO requires only self-declaration by the enterprise itself (no third-party certification required). Toyota Industries, however, in order to create an even more reliable program, has decided to have its self-assessment confirmed by the international inspection and certification organization, Bureau Veritas Japan Co., Ltd.

*1 Environmental labelling: Labelling that conveys to consumers the environmental aspects of a product or service through text written on the product, advertisements, symbol marks, and other means. ISO has established three categories of environmental labels – Type I labels (e.g. Japan’s Eco Mark), which indicate certification by an independent verifying agency, Type II labels, which indicate self-declaration by the enterprise that certain standards have been met, and Type III labels (e.g., Japan’s EcoLeaf Program), which provide environmental impact data for the product.

Features of the new GENEO’s environmental performance

- Superior fuel efficiency due to the adoption of an electronically controlled throttle (electronically controlled 4Y gasoline engine)
- High power and cleaner emissions have been achieved due to the electronically controlled engine and three-way catalytic muffler (standard equipment) which meet 2007 emissions standards*2
- High-power, and cleaner diesel engine that meets emissions standards*3
- Almost 100% filtering of black smoke with the DPF-II (option)
- Major reductions in the use of substances of concern

*2 2007 Emissions Standards for Special/Non-Road Motor Vehicles
*3 2003 Emissions Standards for Special/Non-Road Motor Vehicles

Environmental Label

Certified products carry an “environmental label” containing the mark shown below on the product itself, its packaging, catalogs, and other materials. The mark’s circle represents the Earth, wrapped in a green leaf.

On the new GENEO lift truck the environmental label is attached to the front of the vehicle’s body, between the frame and the mast.

Independent Verifying Agency’s Certification of Toyota Industries’ Certification Program

In December 2006, Toyota Industries launched its own certification program for environmentally friendly products. The first product to obtain this certification was the new internal combustion lift truck, “GENEO” (8FG/D outside Japan), which was released in September 2006.

The aims of the certification program are the pursuit of environmental considerations during product development and the promotion of Toyota Industries’ environmentally friendly products. It is based on the International Standards Organization (ISO) Type II environmental labelling standard (ISO14021)*1. Environmentally friendly products are certified if they meet Toyota Industries’ own standards for consideration of the three main themes of the Fourth Environmental Action Plan during their product development. The Fourth Environmental Action Plan started in fiscal year 2007 and the three main themes are curbing global warming, using resources more efficiently, and reducing environmental risk factors (substance of concern risk management).

Assessment under the certification program is conducted according to a two-pronged approach. The first is a “Factor Assessment”, which assesses quantitatively how much the newly developed product’s eco-efficiency has improved compared to that of the base product (existing Toyota Industries product). The second is a “Development Processes Assessment”, which includes assessment of factors such as fuel efficiency improvements, smaller size, lighter weight, and the like. Products that satisfy the criteria are then checked by an independent verifying agency and adjudicated within the company before being granted certification. Products that are certified carry a Toyota Industries environmental label.

Under the Type II environmental labelling standard, ISO requires only self-declaration by the enterprise itself (no third-party certification required). Toyota Industries, however, in order to create an even more reliable program, has decided to have its self-assessment confirmed by the international inspection and certification organization, Bureau Veritas Japan Co., Ltd.

*1 Environmental labelling: Labelling that conveys to consumers the environmental aspects of a product or service through text written on the product, advertisements, symbol marks, and other means. ISO has established three categories of environmental labels – Type I labels (e.g. Japan’s Eco Mark), which indicate certification by an independent verifying agency, Type II labels, which indicate self-declaration by the enterprise that certain standards have been met, and Type III labels (e.g., Japan’s EcoLeaf Program), which provide environmental impact data for the product.
Implementing 3R Design in All Products

To achieve the efficient use of finite resources, Toyota Industries promotes design and development that implements the 3Rs: Reduce materials used by using them more efficiently, Reuse products and parts that have completed their service life, and Recycle resources.

Vehicles and automobile parts manufactured by Toyota Industries last for approximately 10 years, lift trucks for approximately 15 years, and textile machinery for 20 years or more. To facilitate the reuse and recycling of these products when they have reached the end of their service lives and are to be disposed of, Toyota Industries pursues such measures as safe and efficient dismantling operations and making disposal easy from the development and design stages.

In 2001, Toyota Industries created its Recycling-Oriented Design Guidelines, which detailed the areas to be considered during design, as well as methods assessing the recyclability. In April 2004, the principles of Reduce and Reuse were added to these Guidelines and they became the 3R Design Guidelines. At the same time, the company established detailed in-house standards regarding the principles of 3R-oriented design and development. In fiscal year 2007, Toyota Industries’ aim was the further promotion of 3R Design. To achieve that aim, it has upgraded the 3R Design Checklist, which is used for 3R assessment in the various stages of development, and revised its in-house standards.

A large number of 3R design elements have been incorporated into the new GENEO (8FG/D outside Japan) lift truck, including the use of recyclable materials for the counterweight, improvements in the ease of dismantling the head light, and the extension of the oil change cycles. In this way, the new GENEO is making a significant contribution to the efficient use of finite resources.

Promotion of 3R Design

ACTIS Manufacturing, a joint-venture company established by Toyota Industries, Denso Corporation, and Toyota Tsusho Corporation, produces remanufactured compressors for the North American compressor aftermarket. In this business, which began in March 2002, used car air-conditioning compressors recovered from the market are dismantled, defective parts are replaced, and the compressors are re-assembled.

In January 2003 ACTIS began working on improving its reuse rate of parts and is currently reviewing its criteria for the assessment of part reusability with the goals of reducing environmental impact and improving profitability. To date, the company has examined ways of increasing the reusability rates for swash plates, front housings, pistons, and cylinders. As a result, it has expanded the scope of its assessment criteria for pistons and cylinders, thereby increasing the recycling rates of these parts.

While continuing its examinations on other parts, it is also working on ways of repairing and reusing parts that have been initially assessed as being unsuitable for reuse, instead of simply disposing of them.

CASE STUDY

Improving the Recycling Rate of Reuse Parts

ACTIS Manufacturing, a joint-venture company established by Toyota Industries, Denso Corporation, and Toyota Tsusho Corporation, produces remanufactured compressors for the North American compressor aftermarket. In this business, which began in March 2002, used car air-conditioning compressors recovered from the market are dismantled, defective parts are replaced, and the compressors are re-assembled.

In January 2003 ACTIS began working on improving its reuse rate of parts and is currently reviewing its criteria for the assessment of part reusability with the goals of reducing environmental impact and improving profitability. To date, the company has examined ways of increasing the reusability rates for swash plates, front housings, pistons, and cylinders. As a result, it has expanded the scope of its assessment criteria for pistons and cylinders, thereby increasing the recycling rates of these parts.

While continuing its examinations on other parts, it is also working on ways of repairing and reusing parts that have been initially assessed as being unsuitable for reuse, instead of simply disposing of them.

Compressor Parts (Swash Plate Type)

ACTIS Remanufacturing Flow
Reduce the Use of Hazardous Substances of Concern

Reducing the use of Hazardous Substances of Concern in All Products

To help minimize the environmental impact of product use and disposal, Toyota Industries has worked to reduce its environmental risks. The company is also working to ensure that none of its products infringe on any environmental laws or regulations.

In compliance with the European Union’s directive on end-of-life vehicles (ELV), Toyota Industries has completed its replacement of four substances, lead, mercury, cadmium, and hexavalent chromium, with alternative substances.

Toyota Industries also aims to eliminate completely the use of these four substances in non-automobile related products, including lift trucks, even though they are not subject to the EU’s ELV directive.

Toyota Industries is also pursuing the replacement of these substances in applications which are not covered by the directive due to the development of alternative technologies has been slow. Examples of such applications are the use of lead in electronic component solder and mercury in panel displays.

Improvement of the Management Systems for Product-Related Environmental Information

In October 2006, the automobile industry released a standardized data sheet that it had developed for investigating the substances contained in parts and other products. In response, Toyota Industries has improved its central management systems for product-related environmental information in order to enable them to collect data in a manner that is consistent with the industry-standard data sheet. This has made the provision of information to customers and the collecting of information from suppliers much smoother, and also made the management of environmental information possible.

Toyota Industries has held briefing sessions for its suppliers to help them understand the new data sheet. In addition to improving performance and extending product life, in order to offer its customers better products and services, Toyota Industries will continue to strive towards even more environmentally friendly product designs in an effort to reduce the impact on the environment.

Graph 1
Progress in the Replacement of Hexavalent Chromium in Lift Trucks

Graph 2
Progress in the Replacement of Cadmium in Lift Trucks

Graph 3
Progress in the Replacement of Lead in Lift Trucks

Graph 4
Progress in the Replacement of Mercury in Lift Trucks

Information about substances of concern obtained from suppliers

Standard data sheet

Customers

Report the environmental information for the delivered products. Assist customers with their environmentally preferable purchasing and the development of environmentally friendly products

Provision of Product Information

Tools for Environmentally Friendly Design

Management of Substances of Concern

Chemical Substances Management System

Parts List System

Regulatory Compliance

Substances of concern contained in all products are ascertained to ensure reliable compliance with product environmental standards such as the EU’s ELV directive.

Environmentally Preferable Purchasing

Supplier management and substance control based on the data received from suppliers regarding substances of concern.

LCA

The environmental impact of a product is calculated and assessed throughout the production of raw materials, parts manufacture, product usage, and recycling stages. This assists in the reduction of environmental impact across the entire product life cycle.

Recycling

Recyclability rates are compiled for each product to assist in improving recycling rates.

(See Page 26 for the Supplier SOC Management System)
Responsibility to the Environment

Prevention of Global Warming Factors in Production

Activities in FY2007 and Future Actions
The Toyota Industries Group’s action policies for curbing global warming, as stated in the Fourth Environmental Action Plan, are the realization of energy reduction and conservation through innovations in production technology and the promotion of measures that will curb global warming on group-wide level.

In fiscal year 2007, Toyota Industries set itself a target of improving its eco-efficiency by 24% compared to fiscal year 1991 levels and has worked to reduce its energy consumption in order to achieve that target. Specific actions taken included cutting back on air use in all of its plants, switching to hot-metal aluminum in die-casting processes at the Obu Plant, and the installation of solar power generation facilities at the Takahama Plant.

On a group-wide base, Toyota Industries set a target of a 17% improvement in eco-efficiency compared to fiscal year 2004 levels. To achieve this goal, (for example), TIBC Corporation, a subsidiary of Toyota Industries, incorporated energy saving measures in its new plant and Toyota Industries is conducting energy efficiency diagnoses for its group companies.

These efforts resulted in an eco-efficiency improvement of 34% compared to fiscal year 1991 levels by Toyota Industries alone and 23% compared to fiscal year 2004 levels by the Toyota Industries Group as a whole.

Due to its rising trend in total CO2 emissions, in the future a scheme for prior assessment of the anticipated energy consumption (see Page 50) will be used to reduce energy consumption at new production facilities and other areas. Also, through the continuation and expansion of the energy efficiency diagnosis program, the deployment of energy-saving technologies throughout the entire Toyota Industries Group will be pursued.

Effective Use of Scrap Metal

At the Higashichita Plant, which manufactures engine blocks and other products, castings are produced by placing pig iron and other metals into a melting furnace (cupola) along with coke as the fuel, and then pouring the metal that has been melted by the combustion heat into molds. The cupola furnace generates CO2 in proportion to the volume of melted metal.

In order to reduce these external CO2 emissions, since May 2005, Toyota Industries had been pursuing the expansion of efficient uses for the scrap metal debris produced by its own Nagakusa Plant and the plants of other Toyota Group companies. After quality issues were dealt with, in July 2006, Toyota Industries switched completely from pig iron, which usually accounts for 15-20% of the total raw materials for casting, to the use of scrap metal.

The use of scrap metal requires more coke than pig iron, but the scrap absorbs a significant proportion of the carbon generated by the coke. For this reason, the standard reduction unit of CO2 emissions at the Higashichita Plant has been kept down to the same level as when pig iron was used.

An added benefit of this action has been the reduction in CO2 emissions derived from the manufacture of pig iron outside the company by approximately 17,000 t-CO2/year. This is equivalent to approximately one-fourth of the CO2 emissions generated at the Higashichita Plant in a year.

* Calculated on the basis of monthly production of 5,000 tons of foundry products (The independent certification organization, Bureau Veritas Japan Co., Ltd. was engaged to ascertain the volume of carbon absorbed—see Page 56.)

Introduction of a Co-Generation System
At the Kitazaki Plant of Izumi Machine Mfg, which manufactures machine tools, automotive components parts, and other products, a co-generation system was installed in 2005 to generate one-third of the plant’s electric power with the use of city gas. The steam that is generated as a by-product of the co-generation system is also being used efficiently in production processes as energy to power steam heaters, water-cooled air-conditioning systems, and the cooling of machinery and equipment. The co-generation system has been installed inside a sound-proof and vibration-proof building, to lessen the impact on local residents.

In fiscal year 2007, the introduction of the co-generation system resulted in a reduction of CO2 emissions by 3,300 t-CO2/year.
Continuation and Expansion of Energy Efficiency Diagnoses at Group Companies

Toyota Industries conducted an Energy Efficiency Diagnosis program for its group companies both in Japan and around the world to check the state of their energy consumption and help them to make improvements.

In fiscal year 2007, eight consolidated subsidiaries with high levels of energy consumption, three in Japan and five overseas, underwent this diagnosis program.

Energy efficiency diagnosis involves investigating and diagnosing of energy use from the perspectives of both the operation of energy supplying equipment and from management. Based on those investigations, recommendations are made of ways to improve operations and management that will lead to reductions in CO₂ emissions.

The diagnosis program in fiscal year 2007 enabled the group to find room for further CO₂ reductions of 2,000 tons/year. Toyota Industries will continue to expand this program to pursue further CO₂ reductions across the Group.

Reducing Greenhouse Gas Emissions

Promotion of HFCs Recovery and Reuse

Toyota Industries is pursuing the reduction of emissions of hydrofluorocarbons (HFCs), a CFC substitute that contributes significantly to the greenhouse effect.

HFCs are used at the Kariya Plant for quality verification testing of completed products during the development of compressors for car air-conditioners. They are also injected into compressors during vehicle assembly at the Nagakusa Plant. To reduce emissions of these HFCs, recovery equipment has been installed at both plants, and any reusable HFCs that are recovered are reused.

Reducing CO₂ Emissions from Logistics Operations

Reduction of Energy Loss by Improving Transport Efficiency

The Act for the PartialRevision of the Act Concerning the Rational Use of Energy, which was announced in August 2005, requires not only freight carriers, but also consignors who have large volumes of freight transported by freight carriers, to make efforts to reduce energy consumption in transportation.

Toyota Industries has for several years worked to control and reduce fuel consumption by reorganizing and cutting down on the number of regular truck services and improving load capacity efficiencies. In fiscal year 2007, these controls were extended to provisional services as well as part of Toyota Industries’ ongoing efforts to reduce emissions.

TOPICS

Promotion of a Modal Shift by TOYOTA Material Handling Company

TOYOTA Material Handling Company is pursuing a modal shift in freight transportation by expanding its rail transportation services for domestic freight.

Road and sea are the main modes of transportation of lift trucks manufactured at the Takahama Plant that are bound for dealers in Japan, and rail transportation previously accounted for only a very small proportion of this freight.

In fiscal year 2007, however, TOYOTA Material Handling Company launched rail freight services to the Shikoku and Chugoku regions. The company is working to increase the volumes of freight transported by rail even further by modifying its loading methods and increasing the number of models that can be carried by rail. TOYOTA Material Handling Company will continue to pursue this modal shift by expanding its rail freight area and improving its loading technologies.

Advantages of Rail Transportation

Promotion of a Modal Shift by TOYOTA Material Handling Company

To Kagoshima Port

To Nagoya Port

To Naha Port

To Tomakomai Port

To Tottori Port

To Hachinohe Port

To Higashi-Tokyo Port

To Tokyo Port

To Shinmoji Port

To Kushiro Port

To Tomakomai Port

To Hachinohe Port

Environmental Communication

Environmental Accounting

Environmental Management

Environmental Data

Global Environmental Commitment

Environmental Data

Environmental Accounting

Environmental Management

Environmental Communication

Environmental Planning

Environmental Management

Environmental Data
Toyota Industries, in conjunction with a local landscaping firm, has established the Agui Recycling Center in Agui-cho, Chita-gun, Aichi Prefecture. The Recycling Center recycles branches pruned from trees and shrubs at Toyota Industries’ various plants by converting them into compost. In fiscal year 2006, the Center produced approximately 125 tons of compost. The compost produced is returned to the plants to be placed on the vegetation and is also distributed to local residents and employees.

Resource Conservation Measures

Curbing of Waste Generation at the Source and In-House Reuse

In its Fourth Environmental Action Plan, Toyota Industries has declared a policy of improving resource productivity and achieving a more efficient use of resources. This will be achieved in several ways, including curbing waste generation at the source by increasing yields during production processes, and the in-house reuse of waste that is generated within the company, such as scrap metal.

Efforts to improve eco-efficiency include the reduction of defect ratio in the aluminum casting processes at Higashichita Plant, and increased in-house reuse of scrap metal through the expansion of waste iron separation at the Takahama Plant.

Some divisions, however, have experienced declines in resource efficiency, due to increased levels of waste oil in the aluminum die-casting processes at the Obu Plant and production preparations for the new engine models for example.

In fiscal year 2008, further efforts will be made to increase resource efficiency by further reducing defect ratio and promoting in-house reuse of waste materials. The target for these efforts is a 14% increase in eco-efficiency.

Reducing Landfill Waste to Zero for the Toyota Industries Group

Toyota Industries, by itself, has already achieved its individual goal of the complete elimination of waste disposed of in landfills and has now set a new goal in the Fourth Environmental Action Plan of zero landfill waste for all group companies in Japan.

To achieve this goal, Japanese group companies launched a variety of measures in fiscal year 2007. These measures will continue to be built upon in fiscal year 2008 and Toyota Industries will continue to support the group companies in their endeavors to reduce their landfill waste.

The target for general waste materials is to maintain the current levels.

With the expansion of the scope of the Environmental Action Plan’s policy, the scope of some calculations has been reviewed.
Reducing Timber-Derived Packaging Materials

Toyota Industries continues to pursue reductions in the volume of packaging materials it uses, with an emphasis on timber-derived materials that are used in particularly large quantities.

The textile machinery, compressor, and materials handling equipment businesses are all particularly dependent on timber-derived packaging materials, but they are working to reduce the volume used by re-examining their packaging configurations and materials.

Reducing Water Use by Recycling Wastewater

At Toyota Industries, a particular emphasis is being placed on efforts to curtail groundwater use, in consideration of the risks of ground sinkage.

Measures adopted in fiscal year 2007 to reduce groundwater use included the introduction of additional sources of industrial water, a review of existing supply contracts, and the recycling of treated final effluent discharged from wastewater treatment plants and wastewater from plating processes as a means of reducing the overall water consumption. However, production increases and the less-than-expected effectiveness of treated final effluent recycling, among other factors, meant that levels of both overall water use and groundwater use remained unchanged from the previous year and reduction targets were not achieved.

In the future, in addition to increasing the volume of supplied industrial water in an effort to reduce groundwater use, efforts will also be made to reduce overall water use, particularly by those facilities that are the heaviest water users. The goal of these efforts is to lower groundwater consumption levels to less than 50% of fiscal year 2004 levels by fiscal year 2011, the final year of the Fourth Environmental Action Plan.

Also, from the standpoint of securing valuable water resources, Toyota Industries is controlling the volume of water used at all of its facilities. Efforts are being directed towards everyday water conservation, reduction of water in production processes and the recycling of wastewater.

| Graph 3 | Changes in Total Water Consumption |

<table>
<thead>
<tr>
<th>Year</th>
<th>Groundwater</th>
<th>Industrial water</th>
<th>Public water supply</th>
<th>Target (Groundwater use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 actual</td>
<td>3,028</td>
<td>1,267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 actual</td>
<td>3,162</td>
<td>1,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006 actual</td>
<td>3,166</td>
<td>1,189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Target</td>
<td>3,099</td>
<td>978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Actual</td>
<td></td>
<td>1,030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the expansion of the scope of the Environmental Action Plan’s policies, the scope of some calculations has been reviewed.
Reduction of Environmental Risks in Production

Responsibility to the Environment

Risk Assessment Program Based on Environmental Impact

Total Environmental Impact

Toyota Industries action policies for the reduction of environmental risks in production, as stated in the Fourth Environmental Action Plan, are the minimization of environmental risk factors and further reductions in the emissions of substances of concern (SoC). During the development of the methods for appropriate management of environmental risk factors, the different characteristics of the environmental impact at the various plants made it difficult to clarify which problems should be given priority.

To solve this problem, in fiscal year 2007, Toyota Industries introduced its own index for the integrated management of environmental impact. Based on JEPIX\(^1\), this index is used to calculate Toyota Industries' total impact on the environment. Statistics used in environmental management—greenhouse gas emissions, PRTR emissions (VOC-derived), and water contaminants (BOD\(^2\), COD, nitrogen, and phosphorous)—are converted into a quantified environmental impact, which is then used to set targets and manage their attainment.

The targets for environmental impact in fiscal year 2007 were both an 18% reduction for Toyota Industries alone and a 10% reduction on a consolidated basis (production companies in Japan), compared to fiscal year 2004 levels. Measures implemented to achieve these targets included the move by away from PRTR Law-designated substances to alternative substances the vehicle business and the switch to water-based coatings for the counterweights on lift trucks by the materials handling equipment business. One of our group companies, ST Liquid Crystal Display Corp., also implemented measures to reduce its emissions of hydrogen fluoride, which is used in its glass etching processes.

These measures enabled both Toyota Industries alone and the Group as a whole to surpass their fiscal year 2007 targets, with Toyota Industries achieving reductions of 29% and the group achieving reductions of 32%.

\(^1\) JEPIX (Japan Environmental Policy Index): A method of assessing environmental performance as a theoretical basis for environmental ratings, developed jointly by the Science and Technology Agency of Japan and the Sustainable Management Forum of Japan.

\(^2\) BOD (Biochemical Oxygen Demand): Indicator of the degree of water pollution

![Graph 1](image)

Changes in Environmental Impact

- **Non-consolidated**
- **Target (Non-consolidated)**
- **Consolidated**
- **Target (Consolidated)**

Fourth Environmental Action Plan (Environmental Impact)

Consolidated: 5% reduction compared to FY 2004 levels

* The Index is calculated by setting the FY 2004 level as 100.

Toyota Industries is continuing to reinforce its activities for the reduction of environmental impact in order to achieve the fiscal year 2011 targets set out in the Fourth Environmental Action Plan. Ongoing measures to protect the environment include the expanded use of water-based coatings in the materials handling equipment business and conversion to more efficient painting methods in the car air conditioning business.

Case Study

Introduction of Water-Based Coatings for Lift Truck Parts Achieves a Major Reduction in VOC Emissions

The materials handling equipment business has developed and introduced new painting methods, switching from VOC (volatile organic compounds)-based coatings to water-based coatings for the lift truck counterweights.

This has resulted in a 75% reduction in VOC emissions from the counterweight painting process.

Case Study

Measures to Reduce Hydrogen Fluoride Emissions from the LCD Panel Manufacturing Processes

ST Liquid Crystal Display Corp., a manufacturer of small to medium-sized LCD panels, uses hydrogen fluoride, a PRTR Law-designated substance, in its glass etching processes. The company has already been recycling used hydrogen fluoride for some time, but washing equipment with water during production shut-downs was generating large volumes of diluted waste liquids. Therefore, in February 2005, the equipment was modified and work processes were changed so that the equipment no longer needed to be washed with water. This succeeded in cutting down on the volume of those diluted waste liquids. Also, after the equipment modifications, the monitoring of changes in the solid content of the hydrogen fluoride during operation management has made it possible to ensure quality and increase operational efficiency. These initiatives resulted in an improvement of the hydrogen fluoride recycling rate from 50% to 65%, and waste liquids fell by about 30%. The elimination of the washing process also reduced monthly water consumption by 430m\(^3\). As additional benefits, emissions of hydrogen fluoride into the waterways and atmosphere were reduced to virtually nothing, and total environmental impact was cut by 98% compared to the fiscal year 2006 results.
Environmental Risk Management

Toyota Industries recognizes that the prevention of risks to the environment, such as environmental pollution and the violation of environmental legislation, is a grave corporate responsibility. Toyota Industries is working to reduce risks such as atmospheric and water pollution, noise and vibration, and the generation of foul odors.

In fiscal year 2007, the Toyota Industries Group, both in Japan and overseas, committed no infringements of environmental legal standards and was subjected to no fines or penalties. There were also no environment-related legal actions taken against any company in the Toyota Industries Group. There were four noise complaints made by local residents, but these were resolved by taking action in the areas generating the noise.

Thorough Controls with Voluntary Target Standards for Prevention of Further Water Pollution

Because all of Toyota Industries’ plants are located in the vicinity of Ise Bay, where degradation of water quality due to eutrophication is a serious problem, the maintenance of the quality of wastewater from our plants is of particular importance.

Toyota Industries has therefore set voluntary targets that are stricter than the legally mandated levels and thoroughly controls wastewater quality levels on a daily basis. Also, wastewater volumes have been reduced by recycling water used at the plants, thus reducing the environmental impact on public waterways.

Introduction of Prior Assessment System for New Plants and Equipment

As the scale of the Toyota Industries Group’s operations grows, one initiative that the Group has embarked on is the concept of “Eco-Factory Activities”, in which health, safety, and environmental measures are taken into account from the very planning stages of operations. As a mechanism to ensure the pursuit of these activities, Toyota Industries has established a Prior Assessment System (in-house standards), which began in fiscal year 2007.

In this program, health, safety, and environmental measures concerning production activities are factored in from the planning stages of the construction of new plants or equipment and the feasibility of those measures is examined. This prior assessment has made it possible to put in place measures that are more effective and efficient than the kind of catch-up measures that are implemented only after construction is complete, which was the usual method used in the past.

The specific flow of the prior assessment system begins with the incorporation of health, safety, and environmental measures by the planning departments at the planning and specifications deliberation stages. These measures are submitted in a prescribed format at the same time as the formal request for project approval is made. After assessment, the measures are audited even after construction or manufacture has commenced, and, in the case of large-scale projects, the results of those audits are reported to the Production Environment Subcommittee (see Page 38).

As well as improving the effectiveness of health, safety, and environmental measures through the implementation of this system, Toyota Industries plans to extend its implementation to other group companies.

Prior Assessment System

<table>
<thead>
<tr>
<th>Process</th>
<th>Business Division</th>
<th>CD</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Planning Dept.</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>and Specifications</td>
<td>Safety, Health &</td>
<td></td>
<td>Planning</td>
</tr>
<tr>
<td>Deliberation</td>
<td>Environment Office</td>
<td></td>
<td>Departments factor in health, safety,</td>
</tr>
<tr>
<td></td>
<td>Safety, Health &</td>
<td></td>
<td>and environmental measures from</td>
</tr>
<tr>
<td></td>
<td>Environment Dept.</td>
<td></td>
<td>the planning stages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(prescribed format attached to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Approval Application).</td>
</tr>
<tr>
<td>Company Approval</td>
<td></td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Approval Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in addition to the regular</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>approval assessment, health,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and environmental measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>also assessed.</td>
</tr>
<tr>
<td>Order, Construction,</td>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>Fitting</td>
<td></td>
<td></td>
<td>Audits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in addition to the usual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>checks of health and safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>measures, environmental</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>measures are checked at the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>same time.</td>
</tr>
<tr>
<td>Use</td>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report to Subcommittee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For large-scale projects, audit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>findings are reported to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Production Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subcommittee.</td>
</tr>
</tbody>
</table>

Ongoing Report: The Prevention of Contamination Outflow to Soil and Groundwater and Clean-Up Operations

Toyota Industries has been investigating the contamination of soil and groundwater from its past use of trichloroethylene as a cleaning agent and conducting clean-up operations where necessary. In addition to the prevention of the outflow of pollutants beyond plant boundaries, clean-ups of contaminated soil and groundwater within those boundaries are also conducted.

Observation wells have been drilled at some plants in the past to monitor the progress of soil clean-up operations. In fiscal year 2008, these observation wells will be established at all Toyota Industries plants to check regularly that soil and groundwater are not being contaminated by substances covered by the Soil Contamination Countermeasures Law or other grease and oils.

Table 1: Trichloroethylene Readings (FY 2007)

<table>
<thead>
<tr>
<th>Plant</th>
<th>Weighted Average Concentration in Groundwater (mg/l)</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyowa Plant</td>
<td>0.69</td>
<td>Clean-up in progress</td>
</tr>
<tr>
<td>Kariya Plant</td>
<td>0.9</td>
<td>Clean-up in progress</td>
</tr>
</tbody>
</table>

* Environmental limit: 0.03
TOPICS

TIEM Receives an Environmental Award
Toyota Industrial Equipment Manufacturing (TIEM), a subsidiary in US has received the 2006 Governor’s Award for Environmental Excellence from the Governor of Indiana.

This award is presented to companies that conduct business activities or make decisions that display excellent environmental strategies. TIEM received the award in recognition of the various results it had achieved over five years of continuous environmental improvement activities.

TIEM’s Environmental Achievements Over Five Years
33% reduction in VOC, 80% reduction in atmospheric pollutants, 24.4% reduction in electricity consumption, 65% reduction in LNG, etc.
Responsibility to the Environment

Environmental Accounting

Toyota Industries regards environmental accounting, which evaluates the effectiveness of the company’s environmental activities from the perspective of cost, as a critical tool not only for corporate management, but also for the disclosure of quantitative information about the environment. As such, it is continually striving to enhance its environmental accounting systems. Environmental accounting data is collected according to the categories found in the Ministry of the Environment’s Environmental Accounting Guidelines 2005 Edition.

From this fiscal year, the group company, Nishina Industrial Co., Ltd., has been included in the Group’s environmental accounting data. Scope of data collection: Toyota Industries, TIBC Corporation, Nishina Industrial Co., Ltd.

Data collection period: April 1, 2006 – March 31, 2007

•Calculation Methods

Environmental Conservation Costs [Table 1]

The total cost of environmental conservation programs in fiscal year 2007 was 11.95 billion yen, consisting of 1.46 billion yen in investment and 10.49 billion yen in expenses. The installation of co-generation systems at five plants was completed in fiscal year 2006, so there were fewer major investment items related to global warming. On the other hand, expenses for global warming counter-measures, such as air leakage counter-measures, increased.

Within resource recycling costs, the waste treatment costs increased due to production increases at TIBC.

Research and development cost items included the development of the new environmentally friendly internal combustion lift truck, GENEO (BFG/D outside Japan), with its low fuel consumption and cleaner exhaust gas emissions, and the development of the LWT710, a water-jet loom that has achieved a major reduction in vibrations.

Environmental Conservation Benefits [Table 2]

The benefits of environmental conservation express the accumulated outcomes of environmental conservation measures every year.

As an example of the benefits of individual investment items, the spin-off effects from the active introduction of co-generation systems in fiscal year 2006 resulted in a reduction of approximately 52,000 tons of CO2.

Economic Benefits of Environmental Conservation Initiatives [Table 3]

Toyota Industries calculates the actual economic benefits of environmental conservation initiatives through calculable benefits, including reductions in energy costs and wastewater treatment costs, as well as profits from the sale of valuable resources.

The economic benefit achieved in fiscal year 2007 was 7.21 billion yen, which was 710 million more than in fiscal year 2006. The main contributor to the total was the profits from the sale of valuable resources, which accounted for 6.24 billion yen.

[Table 1] Environmental Conservation Costs

<table>
<thead>
<tr>
<th>Category</th>
<th>Principal approaches in FY 2007</th>
<th>FY 2007</th>
<th>FY 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment</td>
<td>Expenses</td>
<td>Investment</td>
</tr>
<tr>
<td>Business area costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution prevention cost</td>
<td>Expanding number of plants in which water-based painting of vehicles is introduced</td>
<td>483</td>
<td>866</td>
</tr>
<tr>
<td>Preventing atmospheric pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventing water pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global environmental conservation costs</td>
<td>Introduction of a solar power generation system and high-efficiency motors, counter measures for air leakage</td>
<td>875</td>
<td>3,147</td>
</tr>
<tr>
<td>Resource recycling costs</td>
<td>Promotion of waste recycling and converting waste into valuable resources</td>
<td>4</td>
<td>1,715</td>
</tr>
<tr>
<td>Upstream/downstream costs</td>
<td>Promoting green procurement</td>
<td>—</td>
<td>15.3</td>
</tr>
<tr>
<td>Management costs</td>
<td>Newspaper advertising promoting environmental considerations, publication of Social and Environment Reports</td>
<td>—</td>
<td>1,123</td>
</tr>
<tr>
<td>Research and development costs</td>
<td>Development of internal combustion lift truck “GENEO” and water jet loom LWT 710</td>
<td>92</td>
<td>3,592</td>
</tr>
<tr>
<td>Social contribution activity costs</td>
<td>Support for environmental organizations</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Environmental remediation costs</td>
<td>Purification of soil and groundwater contamination, measures to prevent occurrence of oil and grease ground seepage</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,494</td>
<td>9,826</td>
</tr>
</tbody>
</table>

[Table 2] Environmental Conservation Benefits

<table>
<thead>
<tr>
<th>Environmental impact</th>
<th>Comparison with previous fiscal year</th>
<th>Environmental impact</th>
<th>Comparison with previous fiscal year</th>
<th>Item</th>
<th>FY 2007</th>
<th>FY 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 (52,000 t decrease)</td>
<td>Water (755 t decrease)</td>
<td></td>
<td></td>
<td>Revenue</td>
<td>6,237</td>
<td>4,429</td>
</tr>
<tr>
<td>VOC (311 t decrease)</td>
<td>SOx (16 t increase)</td>
<td>NOx (43 t increase)</td>
<td>COD (2 t decrease)</td>
<td>Cost reductions</td>
<td>797</td>
<td>1,932</td>
</tr>
<tr>
<td>Generation of waste products (8,627 t decrease)</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>7,238</td>
<td>6,498</td>
</tr>
</tbody>
</table>

1 Depreciation component not included in costs of environmental conservation. Costs and investments that include objectives other than environmental aspects either have the difference aggregated or the component removed.
2 Figures calculated after correcting the sales volume difference as the difference between the volume of environmental impact in the previous fiscal year and the volume of environmental impact in the current applicable period.
3 Cost reduction is calculated by multiplying the volume of reduction in environmental impacts by the unit cost.
Toyota Industries Group-Wide Environmental Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Environmental Performance Index</th>
<th>Unit</th>
<th>Toyota Industries, non-consolidated</th>
<th>Domestic Subsidiaries and Affiliates</th>
<th>Overseas Subsidiaries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchased electric power</td>
<td>MWh</td>
<td>345,430</td>
<td>381,731</td>
<td>273,419</td>
<td>1,000,580</td>
<td></td>
</tr>
<tr>
<td>City gas</td>
<td>t</td>
<td>10,000,000</td>
<td>991,400</td>
<td>12,986</td>
<td>112,774</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td>t</td>
<td>161</td>
<td>1,091</td>
<td>3,232</td>
<td>4,475</td>
<td></td>
</tr>
<tr>
<td>A heavy oil</td>
<td>kg</td>
<td>509</td>
<td>526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerosene</td>
<td>kg</td>
<td>2</td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coke</td>
<td>t</td>
<td>6,664</td>
<td></td>
<td>6,664</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil coke</td>
<td>t</td>
<td>1,948</td>
<td></td>
<td>1,948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td>t</td>
<td>298</td>
<td>563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light oil</td>
<td>kg</td>
<td>2,470</td>
<td>2,302</td>
<td></td>
<td>4,774</td>
<td></td>
</tr>
<tr>
<td>LNG</td>
<td>t</td>
<td>–</td>
<td>205</td>
<td></td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Propylene</td>
<td>t</td>
<td>–</td>
<td>19</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>(J) 6,614,770</td>
<td>5,138,854</td>
<td>3,432,005</td>
<td>15,185,629</td>
<td></td>
</tr>
<tr>
<td>Electric power generated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-generation</td>
<td>MWh</td>
<td>200,190</td>
<td>44,864</td>
<td></td>
<td>– 244,554</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrous</td>
<td>t</td>
<td>190,130</td>
<td>2,812</td>
<td>204,168</td>
<td>397,110</td>
<td></td>
</tr>
<tr>
<td>Non-ferrous</td>
<td>t</td>
<td>61,497</td>
<td>24,509</td>
<td>11,309</td>
<td>97,314</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>251,627</td>
<td>27,320</td>
<td>215,477</td>
<td>494,424</td>
<td></td>
</tr>
<tr>
<td>Nonmetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resins</td>
<td>t</td>
<td>1,929</td>
<td>7,207</td>
<td>385</td>
<td>9,521</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>t</td>
<td>–</td>
<td>901</td>
<td>–</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1,929</td>
<td>8,131</td>
<td>434</td>
<td>10,494</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial water</td>
<td>1,000m³</td>
<td>1,710</td>
<td>1,720</td>
<td>466</td>
<td>3,895</td>
<td></td>
</tr>
<tr>
<td>Municipal water</td>
<td>1,000m³</td>
<td>445</td>
<td>129</td>
<td>174</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>Well water</td>
<td>1,000m³</td>
<td>1,030</td>
<td>1,552</td>
<td>–</td>
<td>2,582</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>3,186</td>
<td>3,400</td>
<td>639</td>
<td>7,225</td>
<td></td>
</tr>
<tr>
<td>Chemical substances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic materials</td>
<td>t</td>
<td>7,644</td>
<td>14,214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRTR-designated substances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>7,644</td>
<td>14,214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>t</td>
<td>2,256</td>
<td>104</td>
<td>2,235</td>
<td>4,595</td>
<td></td>
</tr>
<tr>
<td>Cardboard</td>
<td>t</td>
<td>2,199</td>
<td>231</td>
<td>1,039</td>
<td>3,469</td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td>t</td>
<td>195</td>
<td>8</td>
<td>0</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>t</td>
<td>–</td>
<td>166</td>
<td>12</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Office supplies</td>
<td>Copy paper</td>
<td>164</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse gases</td>
<td>From production activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>t-CDυ</td>
<td>283,433</td>
<td>201,380</td>
<td>212,850</td>
<td>697,670</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>t-CDυ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>t-CDυ</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>285,984</td>
<td>212,896</td>
<td>213,196</td>
<td>711,876</td>
<td></td>
</tr>
<tr>
<td>From logistics storage</td>
<td>CO₂</td>
<td></td>
<td>16,951</td>
<td>3,849</td>
<td>40,935</td>
<td>61,535</td>
</tr>
<tr>
<td>Air pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOₓ</td>
<td>kg</td>
<td>313</td>
<td>446</td>
<td></td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>t</td>
<td>134</td>
<td>55</td>
<td>33</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>t</td>
<td>1,844</td>
<td>350</td>
<td>137</td>
<td>2,331</td>
<td></td>
</tr>
<tr>
<td>Wastewater</td>
<td>Volume of water discharged to treatment plants</td>
<td>1,000m³</td>
<td>2,330</td>
<td>2,251</td>
<td>4,799</td>
<td></td>
</tr>
<tr>
<td>Water pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>t</td>
<td>17</td>
<td>6</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>t</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>17</td>
<td>6</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRTR-designated substances Released</td>
<td>Air</td>
<td></td>
<td>481</td>
<td>82</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>t</td>
<td>6</td>
<td>1</td>
<td>–</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Landfill waste</td>
<td>t</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PRTR-designated substances Transferred</td>
<td>Waste</td>
<td></td>
<td>135</td>
<td>171</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Seward</td>
<td>t</td>
<td>–</td>
<td>6</td>
<td>–</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1</td>
<td>177</td>
<td>0</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>Reusable materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycled</td>
<td>t</td>
<td>111,693</td>
<td>28,576</td>
<td>22,604</td>
<td>162,873</td>
<td></td>
</tr>
<tr>
<td>Intermediate processing by third party</td>
<td>t</td>
<td>1</td>
<td>27,226</td>
<td></td>
<td>123,041</td>
<td></td>
</tr>
<tr>
<td>Direct landfill waste</td>
<td>t</td>
<td>–</td>
<td>–</td>
<td>9,390</td>
<td>9,390</td>
<td></td>
</tr>
<tr>
<td>On-site storage</td>
<td>t</td>
<td>–</td>
<td>–</td>
<td>178</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>111,693</td>
<td>28,576</td>
<td>22,604</td>
<td>162,873</td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycled</td>
<td>t</td>
<td>51,038</td>
<td>89,767</td>
<td>2,336</td>
<td>123,041</td>
<td></td>
</tr>
<tr>
<td>Intermediate processing by third party</td>
<td>t</td>
<td>1</td>
<td>27,226</td>
<td></td>
<td>123,041</td>
<td></td>
</tr>
<tr>
<td>Direct landfill waste</td>
<td>t</td>
<td>–</td>
<td>–</td>
<td>9,390</td>
<td>9,390</td>
<td></td>
</tr>
<tr>
<td>On-site storage</td>
<td>t</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>51,038</td>
<td>89,767</td>
<td>2,336</td>
<td>123,041</td>
<td></td>
</tr>
<tr>
<td>Municipal waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycling rate</td>
<td>%</td>
<td>100</td>
<td>97</td>
<td>16</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1,355</td>
<td>833</td>
<td>0</td>
<td>1,898</td>
<td></td>
</tr>
<tr>
<td>Total waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB storage</td>
<td>Condensers</td>
<td>units</td>
<td>404</td>
<td>75</td>
<td>–</td>
<td>479</td>
</tr>
<tr>
<td>Transformers</td>
<td>units</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ballast</td>
<td>units</td>
<td>479</td>
<td>125</td>
<td>–</td>
<td>604</td>
<td></td>
</tr>
</tbody>
</table>
PRTR Law-Designated Substances Released and Transferred (Domestic Production Facilities)

<table>
<thead>
<tr>
<th>Category</th>
<th>Reference No.</th>
<th>Chemical Substance</th>
<th>Amount Handled</th>
<th>Released Volume</th>
<th>Transferred Volume</th>
<th>Volume Recycled</th>
<th>Volume Removed</th>
<th>Consumption Volume</th>
<th>Volume Used in Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Air</td>
<td>Water</td>
<td>Landfill</td>
<td>Waste</td>
<td>Sewage</td>
<td></td>
</tr>
<tr>
<td>Subsidiaries and affiliates in Japan</td>
<td>16</td>
<td>2-Aminomethyl</td>
<td>22,196</td>
<td>0</td>
<td>1,872</td>
<td>0</td>
<td>2,565</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td>173,464</td>
<td>0</td>
<td>124,738</td>
<td>0</td>
<td>22,832</td>
<td>0</td>
<td>9,487</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylglycol</td>
<td>1,416,420</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>4,367</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styrene</td>
<td>5,087</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xylene</td>
<td>492,750</td>
<td>219,396</td>
<td>0</td>
<td>0</td>
<td>46,707</td>
<td>0</td>
<td>26,301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum compounds</td>
<td>1,742</td>
<td>1,742</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic tin compounds</td>
<td>16,091</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>3,030</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coke</td>
<td>37,077</td>
<td>341</td>
<td>93</td>
<td>0</td>
<td>1,247</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene</td>
<td>12,413</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel compounds</td>
<td>18,010</td>
<td>82</td>
<td>0</td>
<td>2,441</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-butyl benzo phthalate</td>
<td>2,403</td>
<td>341</td>
<td>93</td>
<td>0</td>
<td>1,247</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poly (oxyethylene) alkyd ether (C=12-15)</td>
<td>11,882</td>
<td>0</td>
<td>1,588</td>
<td>0</td>
<td>8,512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poly (oxyethylene) noryl ether</td>
<td>27,136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manganese and its compounds</td>
<td>88,066</td>
<td>0</td>
<td>1,761</td>
<td>16,253</td>
<td>0</td>
<td>8,778</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum and its compounds</td>
<td>42,742</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead and its compounds</td>
<td>4,305</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,735</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylene glycol monomethyl ether</td>
<td>1,195</td>
<td>0</td>
<td>0</td>
<td>1,195</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylene glycol</td>
<td>1,416,420</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>4,367</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styrene</td>
<td>5,087</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xylene</td>
<td>492,750</td>
<td>219,396</td>
<td>0</td>
<td>0</td>
<td>46,707</td>
<td>0</td>
<td>26,301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum compounds</td>
<td>1,742</td>
<td>1,742</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic tin compounds</td>
<td>16,091</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>3,030</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coke</td>
<td>37,077</td>
<td>341</td>
<td>93</td>
<td>0</td>
<td>1,247</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene</td>
<td>12,413</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel compounds</td>
<td>18,010</td>
<td>82</td>
<td>0</td>
<td>2,441</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-butyl benzo phthalate</td>
<td>2,403</td>
<td>341</td>
<td>93</td>
<td>0</td>
<td>1,247</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poly (oxyethylene) alkyd ether (C=12-15)</td>
<td>11,882</td>
<td>0</td>
<td>1,588</td>
<td>0</td>
<td>8,512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poly (oxyethylene) noryl ether</td>
<td>27,136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manganese and its compounds</td>
<td>88,066</td>
<td>0</td>
<td>1,761</td>
<td>16,253</td>
<td>0</td>
<td>8,778</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum and its compounds</td>
<td>42,742</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CO2 Emission Conversion Factors

<table>
<thead>
<tr>
<th>Contents</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power</td>
<td>0.3817kg-CO2/kWh</td>
</tr>
<tr>
<td>City gas</td>
<td>2.3576kg-CO2/m3</td>
</tr>
<tr>
<td>LPG</td>
<td>3.0094kg-CO2/kg</td>
</tr>
<tr>
<td>Coke</td>
<td>3.2902kg-CO2/kg</td>
</tr>
<tr>
<td>A heavy oil</td>
<td>2.0079kg-CO2/t</td>
</tr>
<tr>
<td>Kerosene</td>
<td>2.5390kg-CO2/t</td>
</tr>
<tr>
<td>Light oil</td>
<td>2.648kg-CO2/t</td>
</tr>
<tr>
<td>Gasoline</td>
<td>2.3608kg-CO2/t</td>
</tr>
<tr>
<td>LNG</td>
<td>2.790kg-CO2/kg</td>
</tr>
<tr>
<td>Propylene</td>
<td>3.141kg-CO2/kg</td>
</tr>
</tbody>
</table>

CO2 Emission Conversion Factors from Logistics

<table>
<thead>
<tr>
<th>Contents</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>2.32g-CO2/L</td>
</tr>
<tr>
<td>Light oil</td>
<td>2.62g-CO2/kg</td>
</tr>
<tr>
<td>LPG</td>
<td>3.00g-CO2/kg</td>
</tr>
</tbody>
</table>

Definitions

- **Electric power**: Electricity purchased from electric companies for plant and office use.
- **City gas, LPG**: Gas used as energy source at plants and offices.
- **Coke**: Coke used as energy source at plants and offices.
- **Petroleum**: A heavy oil, kerosene, light oil, and gasoline used as energy source at plants and offices.
- **Water**: Service water, industrial water, and underground water used at plants and offices (excluding recycled water).
- **Chemical substances**: Toxic and PRTR Law-designated substances used for manufacturing (including by-products).
- **Packaging materials**: Wood, cardboard, and plastics used for logistics and shipping of products.
- **Paper**: Office paper used at plants and offices.
- **CO2 emissions from logistics operations**: CO2 generated from the transport of finished products from Toyota Industries to the initial customer.
Environmental Data

ISO 14001 Certification by Toyota Industries and Group Subsidiaries and Affiliates (As of March, 2007)

<table>
<thead>
<tr>
<th>Category</th>
<th>Plant, Company</th>
<th>Location</th>
<th>Acquisition Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic plants</td>
<td>Naagakusa</td>
<td>Obu, Aichi</td>
<td>October 1997</td>
</tr>
<tr>
<td></td>
<td>Kariya</td>
<td>Kariya, Aichi</td>
<td>October 1998</td>
</tr>
<tr>
<td></td>
<td>Takahama</td>
<td>Takahama, Aichi</td>
<td>December 1998</td>
</tr>
<tr>
<td></td>
<td>Hekinan</td>
<td>Hekinan, Aichi</td>
<td>November 1999</td>
</tr>
<tr>
<td></td>
<td>Kuwana</td>
<td>Kuwana, Aichi</td>
<td>January 2000</td>
</tr>
<tr>
<td></td>
<td>Ubu</td>
<td>Ubu, Aichi</td>
<td>March 2000</td>
</tr>
<tr>
<td></td>
<td>Hisashiura</td>
<td>Chita-gun, Aichi</td>
<td>March 2003</td>
</tr>
<tr>
<td></td>
<td>Monozuka Works</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic subsidiaries</td>
<td>TBC Corporation</td>
<td>Obu, Aichi</td>
<td>January 2000</td>
</tr>
<tr>
<td></td>
<td>Tokyo Co., Ltd.</td>
<td>Naka-gun, Aichi</td>
<td>November 2001</td>
</tr>
<tr>
<td></td>
<td>Toyota Motor Co., Ltd.</td>
<td>Ueno, Chiba</td>
<td>January 2002</td>
</tr>
<tr>
<td></td>
<td>Nishina Industrial Co., Ltd.</td>
<td>Nagano, Nagano</td>
<td>January 2002</td>
</tr>
<tr>
<td></td>
<td>Tokaikei Co., Ltd.</td>
<td>Utsunomiya, Tochigi</td>
<td>March 2002</td>
</tr>
<tr>
<td></td>
<td>Nagao Koyo Co., Ltd.</td>
<td>Kariya, Aichi</td>
<td>October 2002</td>
</tr>
<tr>
<td></td>
<td>Toyota Transportation Co., Ltd.</td>
<td>Kariya, Aichi</td>
<td>November 2002</td>
</tr>
<tr>
<td></td>
<td>Unica Co., Ltd.</td>
<td>Kyotsu, Aichi</td>
<td>November 2002</td>
</tr>
<tr>
<td></td>
<td>SK Inc.</td>
<td>Nagoya, Aichi</td>
<td>March 2003</td>
</tr>
<tr>
<td></td>
<td>Atlex Co., Ltd.</td>
<td>Hamamatsu, Shizuoka</td>
<td>September 2003</td>
</tr>
<tr>
<td></td>
<td>Mito Shiko Co., Ltd.</td>
<td>Nagoya, Aichi</td>
<td>September 2003</td>
</tr>
<tr>
<td></td>
<td>Honda Corporation</td>
<td>Ibaraki, Gunma</td>
<td>January 2004</td>
</tr>
<tr>
<td></td>
<td>5K Maintenance Inc.</td>
<td>Kariya, Aichi</td>
<td>March 2004</td>
</tr>
<tr>
<td></td>
<td>Iwama Loom Works, Ltd.</td>
<td>Naka-gun, Aichi</td>
<td>April 2004</td>
</tr>
<tr>
<td></td>
<td>Aichi Corporation</td>
<td>Ako, Shiga</td>
<td>July 2004</td>
</tr>
<tr>
<td></td>
<td>Toyota L&F Shizuoka, Inc.</td>
<td>Shizuoka, Shizuoka</td>
<td>July 2004</td>
</tr>
<tr>
<td></td>
<td>TOYOTA L&F Tokai, Co., Ltd.</td>
<td>Shinji, Tokyo</td>
<td>October 2004</td>
</tr>
<tr>
<td></td>
<td>TOYOTA L&F Kei, Co., Ltd.</td>
<td>Kure-gun, Okayama</td>
<td>December 2004</td>
</tr>
<tr>
<td></td>
<td>Sun Valley Inc.</td>
<td>Kariya, Aichi</td>
<td>November 2005</td>
</tr>
<tr>
<td></td>
<td>Toyota Motor Co., Ltd.</td>
<td>Naka-gun, Aichi</td>
<td>November 2006</td>
</tr>
<tr>
<td></td>
<td>TOYOTA L&F Karigawa, Co., Ltd.</td>
<td>Yokohama, Kanagawa</td>
<td>May 2006</td>
</tr>
<tr>
<td></td>
<td>TOYOTA HIGH SYSTEM, INC.</td>
<td></td>
<td>September 2006</td>
</tr>
</tbody>
</table>

*1 Included in the certification of the Obu Plant.
*2 Included in the certification of the Nagakusa Plant.
*3 Included in the certification of the Kyowa Plant.
*4 Included in the certification of the Kariya Plant.
*5 Included in the certification of the Toyota Industrial Equipment, S.A. (TIESA) Group.
*6 Manual truck (MT): refers to plant that only manufactures powered trucks.

Manufacturing Subsidiaries and Affiliates Included in the Consolidated Performance Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Company</th>
<th>Established</th>
<th>Capital</th>
<th>Business Category</th>
<th>Major Businesses</th>
<th>Location</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Nishina Industrial Co., Ltd.</td>
<td>1939</td>
<td>100 million yen</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of hydraulic equipment (industrial equipment, construction machinery)</td>
<td>Nagano, Japan</td>
<td>http://www.nishina-ind.co.jp/en/index-e.html</td>
</tr>
<tr>
<td></td>
<td>Tokaikei Co., Ltd.</td>
<td>1936</td>
<td>98 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of compressor components</td>
<td>Shizuoka, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tokyo Co., Ltd.</td>
<td>1941</td>
<td>135 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of compressor components and industrial machinery</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ibume Machine Mfg. Co., Ltd.</td>
<td>1946</td>
<td>150 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of compressor components, specialized machine tools, friction welding machines, and automotive components</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hara Corporation</td>
<td>1948</td>
<td>23 million yen</td>
<td>Textile Machinery Business</td>
<td>Manufacture and sales of textile machinery</td>
<td>Shiga, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iwama Loom Works, Ltd.</td>
<td>1948</td>
<td>49 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of compressor components, press dies, and textile machinery components</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miduho Industry Co., Ltd.</td>
<td>1950</td>
<td>20 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of automotive, compressor, and industrial equipment components</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aichi Corporation</td>
<td>1962</td>
<td>10,425 million yen</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of material handling equipment systems</td>
<td>Shizuoka, Japan</td>
<td>http://www.aichi-corp.jp/</td>
</tr>
<tr>
<td></td>
<td>Nagao Koyo Co., Ltd.</td>
<td>1969</td>
<td>31 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of compressor components</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unica Co., Ltd.</td>
<td>1974</td>
<td>50 million yen</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of electric forklift trucks</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlex Co., Ltd.</td>
<td>1989</td>
<td>140 million yen</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture and sales of locomotive (compressor components, etc.)</td>
<td>Shizuoka, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SK Inc.</td>
<td>1991</td>
<td>200 million yen</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of aluminum die casting (compressor components, etc.)</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST Liquid Crystal Display Corp.</td>
<td>1991</td>
<td>200 million yen</td>
<td>Materials Handling Equipment Business</td>
<td>General engineering of production lines</td>
<td>Aichi, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBC Corporation</td>
<td>1998</td>
<td>1,440 million yen</td>
<td>Other</td>
<td>Manufacture and sales of semiconductor package substrates</td>
<td>Aichi, Japan</td>
<td>http://www.tbc.co.jp/english/top_e.html</td>
</tr>
<tr>
<td>Overseas</td>
<td>Toyota Industrial Equipment Mfg., Inc. (TIEEM)</td>
<td>1988</td>
<td>US$60,000,000</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture of industrial equipment and its Spare parts</td>
<td>Indiana, U.S.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACTIS Manufacturing, Ltd. LLC (ACTIS)</td>
<td>2001</td>
<td>US$2,000,000</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Remanufacturing of compressors for the compressor aftermarket</td>
<td>Texas, U.S.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toyota Industries Sweden AB (TISAB)</td>
<td>1946</td>
<td>SEK 560,000,000</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of warehouse equipment</td>
<td>Mijlbo, Sweden</td>
<td>http://www.bt-industries.com/</td>
</tr>
<tr>
<td></td>
<td>Toyota Industrial Equipment, S.A. (TIESA)</td>
<td>1995</td>
<td>EUR 8,000,000</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture of industrial equipment and industrial spare parts</td>
<td>Ancenis, France</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TO Deutsche Klimakompresor GmbH (TDKK)</td>
<td>1998</td>
<td>EUR 20,451,000</td>
<td>Car Air-Conditioning Compressor Business</td>
<td>Manufacture of air-conditioning compressors</td>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toyota Industry (Kunshani) Co., Ltd. (TK)</td>
<td>1994</td>
<td>US$23,000,000</td>
<td>Engine Business</td>
<td>Materials Handling Equipment Business</td>
<td>Manufacture and sales of foundry parts for automobiles, textile machinery and industrial equipment, manufacture of BT truck</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Kirloskar Toyota Textile Machinery, Ltd. (KTMT)</td>
<td>1994</td>
<td>Rs. 2,426,200,000</td>
<td>Textile Machinery Business</td>
<td>Manufacturing and sales of spinning frames and parts, manufacturing and painting of automotive parts</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toyota Industry Automotive Parts (Kunshan) Co., Ltd. (TIAP)</td>
<td>2004</td>
<td>US$25,000,000</td>
<td>Engine Business</td>
<td>Manufacture and sales of forged automotive parts</td>
<td>China</td>
<td></td>
</tr>
</tbody>
</table>
Reference View
Bureau Veritas has verified environmental data collection activities at the Headquarters and the stated sites and concludes the following.

1. Good points
- It has been decided to include two domestic plants and a number of domestic and overseas manufacturing subsidiaries/affiliates in the scope of the Environmental Action Plan, which is already under implementation from the 4th Environmental Action Plan. This is in order to provide more information to the public as well as to establish a more accurate understanding about the environmental impact of the entire group. Furthermore, Toyota Industries has included domestic manufacturing subsidiaries/affiliates within the scope of verification for this reporting cycle.
- Toyota Industries is using metrics for environmental efficiency which allows third parties to evaluate the activities more comprehensively.
- Based on discrepancies identified in the 2006 Report, the scope of data aggregation has been unified and expanded across entire plants managed under Headquarters, resulting in more reliable and accurate information at Headquarters and domestic plants which have been included in verification scope since last year.
- Clarifications and enhancements to the data monitoring rules and manuals has further improved the collection and reliability of data.

2. Follow-up on Issues from Verification Report on Social & Environmental Report for 2006
- Aggregation rules for environmental performance data were reviewed and the gap in the perception between Headquarters and the plants has been closed; additionally, the aggregation rules for data that has a significant difference between input and output was also revised in the interests of greater clarification.
- The calculation method for the greenhouse gas emissions from the casting process at the Higashichita Plant, which was subject to verification last year, was improved and the figures reported are considered to be closer to actual conditions; the new calculation method now includes the absorbed carbon rate and has been deployed since October 2006. It is also considered that a calculation method of this refinement is uncommon in Japan and is a commendable approach by Toyota Industries. Data generated from company controlled meter readings, is now considered to be fully reliable due to the recognition for the necessity of effective and consistent meter management.
- The calculation method for HFC usage is now based on actual measurement reporting and as a result the accuracy of this data has been improved. (It is preferable to examine evidence using a revised format for the purpose).
- The calculation method for waste recycling and a clarification of waste management processes (including the reclassification of waste and the identification of reusable and waste materials) has been carried out following re-evaluation of the business contract for waste collection and disposal.

3. Opportunities for Improvement
Headquarters/ domestic plants
- There is not yet enough understanding of data aggregation rules and processes at plants and departments which have recently been included in the verification scope. The rule must be strictly followed at the plants and departments in future.

Domestic manufacturing subsidiaries/ affiliates
- The specification of actual subject data is not completely accurate at sites and because of this, there are certain errors in data collection and interpretation; stricter implementation and control of the established data aggregation rules are necessary.
- Improvements to the reliability of data aggregation processes and to internal verification are important in order to prevent errors that were identified in data input and transfer.

The English versions of the Independent Verification Report and Reference View from BV are translated from the original Japanese versions. The Japanese versions shall be the sole official texts in case of discrepancy.
Economic Performance Indicators

Customers
- EC1. Net sales
- EC2. Geographic breakdown of markets

Suppliers
- EC3. Cost of all raw materials, materials, and services purchased
- EC4. Net amount of contracts that were paid in accordance with agreed terms, excluding agreed penalty amounts

Employees
- EC5. Total payroll and benefits (including wages, pension, other benefits, and redundancy payments) broken down by country or region
- EC6. Indirect costs associated with operations performed by employees

Providers of Capital
- EC7. Indirect costs associated with financing
- EC8. Total sum of interest paid on all forms of debt

Public Sector
- EC9. Subsidies received broken down by country or region
- EC10. Donations to community, civil society, and other groups broken down in terms of cash and in-kind donations by type or group

Environmental Performance Indicators

Materials
- EN1. Total materials use other than water, by type
- EN2. Percentage of materials used that are wastes (processed or unprocessed) from sources external to the reporting organisation
- EN3. Direct energy use segmented by primary source
- EN4. Indirect energy use segmented by primary source
- EN5. Total water use
- EN6. Location and size of land owned, leased, or managed in biodiversity-rich habitats
- EN7. Description of the major water sources and management procedures, including those associated with activities and products in the forest, freshwater, and marine environments
- EN8. Greenhouse gas emissions
- EN9. Use and emissions of ozone-depleting substances
- EN10. NOx, SOx, and other significant emissions
- EN11. Total amount of waste by type and destination
- EN12. Significant discharges to air by type
- EN13. Significant spills of chemicals, oils, and fuels in terms of total number and total volume

Emissions, Effluents, and Waste
- EN14. Overall emissions of significant air pollutants
- EN15. Percentage of the weight of products sold that is regradable at the end of the products' useful life
- EN16. Incidents of and fines for non-compliance with any applicable international environmental conventions/treaties, and national, sub-national, regional, and local regulations associated with environmental issues
- EN17. Significant environmental impacts of transportation used for logistical purposes

Social Performance Indicators (Labour Practices and Decent Works)
- LA1. Breakdown of workforce, where possible, by region/country, status (employee/non-employee), employment type (full-time/part-time), and by employment contract (indefinite or permanent/fixed term or temporary). Also identify workforce retained in conjunction with other employers (e.g., agency workers or in co-employment relationships), broken down by country or region.
- LA2. Net employment creation and average turnover segmented by industry.
- LA3. Significant environmental impacts of principal products and services, and of geographically similar or otherwise environmentally significant air emissions by type.
- LA4. Policy and procedures involving information, consultation, and negotiation with employees on changes in the reporting organisation’s operations (e.g., restructuring).

Health and Safety
- LA5. Practices on recording and notification of occupational accidents and diseases, and how they relate to the ILO’s Code of Practice on Recording and Notification of Occupational Accidents and Diseases.
- LA6. Description of formal health and safety committees comprising management and worker representatives and proportion of workforce covered by any such committees.
- LA7. Standard injury, lost day, and absenteeism rate and number of workplace injuries, illnesses, or diseases.
- LA8. Description of policies and procedures to address workplace illnesses, injuries, or diseases.
- LA9. Description of arrangements for the reintegration of workers following workplace injury and illness.

Training and Education
- LA10. Description of arrangements for the reintegration of workers following workplace injury and illness.
- LA11. Specific policies and programmes for skills management for lifelong learning.

Diversity and Opportunity
- LA12. Composition of senior management and corporate governance bodies (including the board of directors), including female/male ratio and other indicators of diversity as culturally appropriate.
- LA13. Description of policy to prevent forced and compulsory labour and extent to which this policy is visibly stated and applied as well as description of procedures/programmes to address this issue.
- LA14. Description of policies and procedures/management systems, and compliance mechanisms related to product information and labelling.

Social Performance Indicators (Society)
- SO1. Description of policies to manage impacts on communities in areas affected by activities, as well as description of procedures/programmes to address this issue, including monitoring systems and results of monitoring.
- SO2. Description of the policy, procedures/management systems, and compliance mechanisms related to product information and labelling.
- SO3. Description of policies, procedures/management systems, and compliance mechanisms for managing political lobbying and contributions.

Social Performance Indicators (Product Responsibility)
- PR1. Description of policies, guidelines, corporate structure, and procedures to deal with all aspects of human rights relevant to operations, including monitoring mechanisms and results.
- PR2. Description of policies and procedures/management systems, and compliance mechanisms related to product information and labelling.
- PR3. Description of policy to prevent forced and compulsory labour and extent to which this policy is visibly stated and applied as well as description of procedures/programmes to address this issue.
- PR4. Description of policy for preserving customer health and safety during use of products and services, and extent to which this policy is visibly stated and applied, as well as description of procedures/programmes to address this issue, including monitoring systems and results of monitoring.
- PR5. Description of policy, procedures/management systems, and compliance mechanisms related to product information and labelling.
- PR6. Description of policy, procedures/management systems, and compliance mechanisms related to customer satisfaction, including results of surveys measuring customer satisfaction.
- PR7. Description of policy, procedures/management systems, and compliance mechanisms for managing political lobbying and contributions.
- PR8. Description of policy, procedures/management systems, and compliance mechanisms for managing political lobbying and contributions.
- PR9. Description of policy, procedures/management systems, and compliance mechanisms for managing political lobbying and contributions.